cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A024973 Sum of three distinct positive cubes, including repetitions (first differs from A024975 at 1009).

Original entry on oeis.org

36, 73, 92, 99, 134, 153, 160, 190, 197, 216, 225, 244, 251, 281, 288, 307, 342, 349, 352, 368, 371, 378, 405, 408, 415, 434, 469, 476, 495, 521, 532, 540, 547, 560, 567, 577, 584, 586, 603, 623, 638, 645, 664, 684, 701, 729, 736, 738, 755, 757, 764, 792, 794, 801, 820
Offset: 1

Views

Author

Keywords

A024976 Positions of primes in A024975 (sums of three distinct cubes).

Original entry on oeis.org

2, 9, 13, 14, 16, 18, 30, 33, 36, 45, 50, 56, 60, 61, 64, 66, 69, 78, 86, 90, 109, 115, 120, 139, 143, 153, 156, 169, 170, 172, 178, 191, 193, 208, 210, 222, 228, 232, 235, 242, 258, 272, 276, 284, 285, 291, 299, 301, 324, 338, 345, 355, 363, 374, 375, 386
Offset: 1

Views

Author

Keywords

Extensions

Corrected and extended by Don Reble, Nov 19 2006

A024977 Positions of even numbers in A024975.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 15, 17, 19, 20, 22, 24, 26, 28, 31, 32, 34, 37, 38, 41, 43, 44, 47, 48, 51, 52, 53, 55, 58, 59, 62, 63, 65, 67, 68, 70, 73, 75, 77, 80, 82, 83, 87, 88, 91, 92, 93, 95, 97, 100, 101, 102, 105, 107, 108, 111, 113, 116, 117, 118, 121, 123, 125, 126, 128, 129, 133, 135
Offset: 1

Views

Author

Keywords

A024978 Positions of odd numbers in A024975.

Original entry on oeis.org

2, 4, 6, 9, 11, 13, 14, 16, 18, 21, 23, 25, 27, 29, 30, 33, 35, 36, 39, 40, 42, 45, 46, 49, 50, 54, 56, 57, 60, 61, 64, 66, 69, 71, 72, 74, 76, 78, 79, 81, 84, 85, 86, 89, 90, 94, 96, 98, 99, 103, 104, 106, 109, 110, 112, 114, 115, 119, 120, 122, 124, 127, 130, 131, 132, 134, 136, 138
Offset: 1

Views

Author

Keywords

Extensions

a(68) corrected by Sean A. Irvine, Jul 31 2019

A024979 Position of n^3 + 9 in A024975.

Original entry on oeis.org

1, 2, 5, 11, 19, 30, 48, 69, 95, 127, 163, 210, 268, 334, 397, 480, 579, 683, 802, 931, 1075, 1227, 1400, 1581, 1779, 1997, 2220, 2487, 2759, 3046, 3342, 3673, 3999, 4360, 4736, 5145, 5572, 6033, 6491, 6993, 7524, 8084, 8668, 9276, 9921, 10591, 11262
Offset: 3

Views

Author

Keywords

Extensions

Corrected and extended by David W. Wilson, May 15 1997

A024980 a(n) = position of n^3 + (n+1)^3 + (n+2)^3 in A024975.

Original entry on oeis.org

1, 4, 10, 23, 44, 74, 118, 166, 241, 328, 436, 563, 718, 894, 1095, 1327, 1585, 1891, 2199, 2592, 2987, 3417, 3884, 4406, 4968, 5563, 6234, 6931, 7707, 8519, 9408, 10360, 11315, 12392, 13465, 14665, 15908, 17236, 18616, 20057, 21570, 23153, 24824, 26546
Offset: 1

Views

Author

Keywords

Extensions

Corrected and extended by David W. Wilson, May 15 1997

A024670 Numbers that are sums of 2 distinct positive cubes.

Original entry on oeis.org

9, 28, 35, 65, 72, 91, 126, 133, 152, 189, 217, 224, 243, 280, 341, 344, 351, 370, 407, 468, 513, 520, 539, 559, 576, 637, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343, 1358, 1395, 1456, 1512, 1547, 1674
Offset: 1

Views

Author

Keywords

Comments

This sequence contains no primes since x^3+y^3=(x^2-x*y+y^2)*(x+y). - M. F. Hasler, Apr 12 2008
There are no terms == 3, 4, 5 or 6 mod 9. - Robert Israel, Oct 07 2014
a(n) mod 2: {1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,1,0, ...} - Daniel Forgues, Sep 27 2018

Examples

			9 is in the sequence since 2^3 + 1^3 = 9.
35 is in the sequence since 3^3 + 2^3 = 35.
		

Crossrefs

See also: Sums of 2 positive cubes (not necessarily distinct): A003325. Sums of 3 distinct positive cubes: A024975. Sums of distinct positive cubes: A003997. Sums of 2 distinct nonnegative cubes: A114090. Sums of 2 nonnegative cubes: A004999. Sums of 2 distinct positive squares: A004431. Cubes: A000578.
Cf. A373971 (characteristic function).
Indices of nonzero terms in A025468.

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    S:= select(`<=`,{seq(seq(i^3 + j^3, j = 1 .. i-1), i = 2 .. floor(N^(1/3)))},N);
    # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(S,list));
    # Robert Israel, Oct 07 2014
  • Mathematica
    lst={};Do[Do[x=a^3;Do[y=b^3;If[x+y==n,AppendTo[lst,n]],{b,Floor[(n-x)^(1/3)],a+1,-1}],{a,Floor[n^(1/3)],1,-1}],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 22 2009 *)
    Select[Range@ 1700, Total@ Boole@ Map[And[! MemberQ[#, 0], UnsameQ @@ #] &, PowersRepresentations[#, 2, 3]] > 0 &] (* Michael De Vlieger, May 13 2017 *)
  • PARI
    isA024670(n)=for( i=ceil(sqrtn( n\2+1,3)),sqrtn(n-.5,3), isA000578(n-i^3) & return(1)) /* One could also use "for( i=2,sqrtn( n\2-1,3),...)" but this is much slower since there are less cubes in [n/2,n] than in [1,n/2]. Replacing the -1 here by +.5 would yield A003325, allowing for a(n)=x^3+x^3. Replacing -1 by 0 may miss some a(n) of this form due to rounding errors. - M. F. Hasler, Apr 12 2008 */
    
  • Python
    from itertools import count, takewhile
    def aupto(limit):
        cbs = list(takewhile(lambda x: x <= limit, (i**3 for i in count(1))))
        sms = set(c+d for i, c in enumerate(cbs) for d in cbs[i+1:])
        return sorted(s for s in sms if s <= limit)
    print(aupto(1674)) # Michael S. Branicky, Sep 28 2021

Extensions

Name edited by Zak Seidov, May 31 2011

A025469 Number of partitions of n into 3 distinct positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation n = x^3 + y^3 + z^3 with x > y > z > 0. - Antti Karttunen, Aug 29 2017

Examples

			From _Antti Karttunen_, Aug 29 2017: (Start)
For n = 36 there is one solution: 36 = 27 + 8 + 1, thus a(36) = 1.
For n = 1009 there are two solutions: 1009 = 10^3 + 2^3 + 1^3 = 9^3 + 6^3 + 4^3, thus a(1009) = 2. This is also the first point where sequence attains value greater than one.
(End)
		

Crossrefs

Cf. A025465 (not necessarily distinct), A025468, A025419 (greedy inverse).
Cf. A024975 (positions of nonzero terms), A024974 (positions of terms > 1), A025399-A025402.

Programs

Formula

a(n) = A025465(n) - A025468(n). - Antti Karttunen, Aug 29 2017

A122723 Primes that are the sum of three distinct positive cubes.

Original entry on oeis.org

73, 197, 251, 281, 307, 349, 521, 547, 577, 701, 757, 853, 863, 881, 919, 953, 1009, 1091, 1217, 1249, 1483, 1559, 1637, 1861, 1907, 2069, 2087, 2267, 2269, 2287, 2339, 2477, 2521, 2729, 2753, 2843, 2927, 2953, 2969, 3067, 3257, 3413, 3457, 3527, 3529
Offset: 1

Views

Author

Jonathan Vos Post, Sep 23 2006

Keywords

Comments

Considering parity, a prime sum of three cubes cannot be the sum of three evens nor two odds and an even, but must be the sum of three odds (such as 1^3 + 3^3 + 9^3 = 757 or 3^3 + 5^3 + 9^3 = 881) or two evens and an odd (such as 1^3 + 2^3 + 10^3 = 1009). Without "distinct" we have solutions such as 1^3 + 1^3 + 3^3 = 29; 2^3 + 2^3 + 3^3 = 43; 1^3 + 1^3 + 5^3 = 127. A subset of the three odds subset is primes which are the sum of the cubes of three distinct primes, such as 3^3 + 5^3 + 11^3 = 1483; or 3^3 + 7^3 + 19^3 = 7229; or 7^3 + 11^3 + 23^3 = 13841; or 3^3 + 5^3 + 41^3 = 69073.

Examples

			a(1) = 73 = 1^3 + 2^3 + 4^3.
a(7) = 521 = 1^3 + 2^3 + 8^3.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[p=n^3+m^3+k^3;If[PrimeQ[p],AppendTo[lst,p]],{n,m+1,4!}],{m,k+1,4!}],{k,4!}];Take[Union[lst],30] (* Vladimir Joseph Stephan Orlovsky, May 23 2009 *)

Formula

Primes in A024975.

Extensions

Corrected and extended by Vladimir Joseph Stephan Orlovsky and T. D. Noe, Jul 16 2010

A138854 Numbers which are the sum of three cubes of distinct primes.

Original entry on oeis.org

160, 378, 476, 495, 1366, 1464, 1483, 1682, 1701, 1799, 2232, 2330, 2349, 2548, 2567, 2665, 3536, 3555, 3653, 3871, 4948, 5046, 5065, 5264, 5283, 5381, 6252, 6271, 6369, 6587, 6894, 6992, 7011, 7118, 7137, 7210, 7229, 7235, 7327, 7453, 8198, 8217, 8315
Offset: 1

Views

Author

M. F. Hasler, Apr 13 2008

Keywords

Comments

This is a subsequence of A024975. The odd terms of this sequence are A138853, the even terms are 8+{ even terms of A120398 }. Thus primes in this sequence, A137365, are the same as primes in A138853.

Crossrefs

Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A138853 (odd terms of this), A120398, A137365 (primes in A138853 / A138854).

Programs

  • Maple
    isA030078 := proc(n)
        local f ;
        if n < 8 then
            false;
        else
            f := ifactors(n)[2] ;
            if nops(f) = 1 and op(2,op(1,f)) = 3 then
                true;
            else
                false;
            end if;
        end if;
    end proc:
    isA138854 := proc(n)
        local i,j,p,q,r,rcub ;
        for i from 1 do
            p := ithprime(i) ;
            if p^3+(p+1)^3+(p+2)^3 > n then
                return false;
            end if;
            for j from i+1 do
                q := ithprime(j) ;
                rcub := n-q^3-p^3 ;
                if rcub <= q^3 then
                    break;
                fi ;
                if isA030078(rcub) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 5 do
        if isA138854(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Jun 09 2014
  • Mathematica
    f[upto_]:=Module[{maxp=PrimePi[Floor[Power[upto, (3)^-1]]]}, Select[Union[Total/@(Subsets[Prime[Range[maxp]],{3}]^3)],#<=upto&]]; f[9000]  (* Harvey P. Dale, Mar 21 2011 *)
  • PARI
    isA138854(n)={ if( n%2, isA138853(n), isA120398(n-8)) }
    for( n=1,10^4, isA138854(n) & print1(n", "))

Formula

A138854 = { p(i)^3+p(j)^3+p(k)^3 ; i>j>k>0 } = A138853 union { p(i)^3+p(j)^3+8 ; i>j>1}
Showing 1-10 of 26 results. Next