cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A180099 Primes which are the sum of three distinct positive cubes of prime numbers in two or more distinct ways.

Original entry on oeis.org

185527, 451837, 591751, 1265471, 1266929, 1618973, 1626227, 1664713, 2586277, 2754683, 2765519, 2805193, 3422303, 3740309, 3748499, 4154779, 5336479, 5483953, 5557987, 6130151, 6586091, 7231013, 7361801, 7726571, 8205553
Offset: 1

Views

Author

Keywords

Examples

			185527 = 47^3+43^3+13^3=53^3+31^3+19^3.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[Do[If[PrimeQ[p=Prime[a]^3+Prime[b]^3+Prime[c]^3],AppendTo[lst,p]],{c,b-1,1,-1}],{b,a-1,1,-1}],{a,88}];lst1=Sort@lst; lst={};Do[If[lst1[[n]]==lst1[[n+1]],AppendTo[lst,lst1[[n]]]],{n,Length[lst1]-1}];lst
    Select[Tally[Select[Total/@Subsets[Prime[Range[50]]^3,{3}],PrimeQ]],#[[2]]> 1&] [[All,1]]//Sort (* Harvey P. Dale, Sep 26 2020 *)

A180106 Semiprimes which are the sum of three distinct positive cubes of semiprime numbers in two or more distinct ways.

Original entry on oeis.org

88073, 195905, 196057, 196841, 205102, 211466, 610903, 747209, 809966, 1078622, 1543267, 1828441, 1967402, 2143783, 2312029, 2803501, 3055258, 3108673, 3244466, 3477629, 3662567, 4237577, 4770137, 5741074, 5835593, 5908889, 7189265, 7497118, 8438249, 8742781
Offset: 1

Views

Author

Keywords

Comments

610903 = 74^3+55^3+34^3 = 82^3+39^3+6^3.
88073 = 29*3037 = 21^3+33^3+35^3 = 25^3+26^3+38^3. - Chai Wah Wu, May 20 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := PrimeOmega@ n == 2; lst = {}; Do[Do[Do[If[And[f[a], f[b], f[c], f[p = a^3 + b^3 + c^3]], AppendTo[lst, p]], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 200}]; lst1 = Sort@ lst; lst = {}; Do[If[lst1[[n]] == lst1[[n + 1]], AppendTo[lst, lst1[[n]]]], {n, Length[lst1] - 1}]; lst (* Corrected by Michael De Vlieger, May 21 2017 *)

Extensions

Terms corrected by Chai Wah Wu, May 20 2017
Showing 1-2 of 2 results.