cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A025469 Number of partitions of n into 3 distinct positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation n = x^3 + y^3 + z^3 with x > y > z > 0. - Antti Karttunen, Aug 29 2017

Examples

			From _Antti Karttunen_, Aug 29 2017: (Start)
For n = 36 there is one solution: 36 = 27 + 8 + 1, thus a(36) = 1.
For n = 1009 there are two solutions: 1009 = 10^3 + 2^3 + 1^3 = 9^3 + 6^3 + 4^3, thus a(1009) = 2. This is also the first point where sequence attains value greater than one.
(End)
		

Crossrefs

Cf. A025465 (not necessarily distinct), A025468, A025419 (greedy inverse).
Cf. A024975 (positions of nonzero terms), A024974 (positions of terms > 1), A025399-A025402.

Programs

Formula

a(n) = A025465(n) - A025468(n). - Antti Karttunen, Aug 29 2017

A374227 a(n) is the smallest number which can be represented as the sum of three distinct positive n-th powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

6, 62, 5104, 5978882
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(3) = 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

A385354 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^2, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

6, 188, 768, 1728, 2640, 21120, 42336, 13824, 71280, 5832, 80352, 74088, 425088, 421875, 1058400, 110592, 287496, 46656
Offset: 1

Views

Author

Zhining Yang, Jun 26 2025

Keywords

Comments

a(19) > 2000000, a(20) = 216000, a(22) = 884736.

Examples

			a(3)=768, because 768^2 = 54^3 + 59^3 + 61^3 = 40^3 + 62^3 + 66^3 = 24^3 + 40^3 + 80^3 and no integer less than 768 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^2, 3, 3],
         0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 2000}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 4}][[All, 1]]

Extensions

a(18) from Chai Wah Wu, Jul 05 2025

A385566 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^6, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

3, 6, 16, 12, 27, 63, 38, 24, 94, 18, 123, 42, 93, 75, 141, 48, 66, 36, 153, 60, 140, 96, 279, 114, 200, 138, 410, 174, 72, 126, 186, 168, 204, 150, 108, 426, 132, 220, 418, 246, 498, 736, 144, 120, 294, 306, 210, 666, 282, 378, 252, 770, 216, 460, 462, 534, 180
Offset: 1

Views

Author

Zhining Yang, Jul 03 2025

Keywords

Examples

			a(3)=16, because 16^6 = 9^3 + 58^3 + 255^3 = 9^3 + 183^3 + 220^3 = 22^3 + 57^3 + 255^3  and no integer less than 16 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^6, 3, 3], 0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 30}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 5}][[All, 1]]

Extensions

a(41)-a(57) from Chai Wah Wu, Jul 07 2025

A350270 a(n) is the smallest number which can be represented as the sum of n distinct positive cubes in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

1, 1729, 5104, 4445, 4509, 4662, 5454, 6210, 9045, 11124, 14967, 17964, 22051, 26209, 32697, 39564, 46908, 56070, 66222, 78912, 92961, 105841, 123732, 143200, 162801, 188154, 212220, 241614, 271405, 307448, 344016, 383607, 428624, 475273, 529830, 586664, 645120
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 22 2021

Keywords

Examples

			For n = 2: 1729 = 1^3 + 12^3 = 9^3 + 10^3.
For n = 3: 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

Extensions

a(16)-a(27) from Michael S. Branicky, Dec 22 2021
More terms from Jinyuan Wang, Dec 30 2021

A385565 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 = k^4, where 0 < x < y < z has exactly n integer solutions.

Original entry on oeis.org

11, 21, 64, 144, 330, 846, 342, 252, 1331, 1008, 720, 1890, 3780, 729, 4200, 2016, 1000, 216, 6300, 8352, 10800, 12312, 8568, 19440, 8280, 9576, 21204
Offset: 1

Views

Author

Zhining Yang, Jul 03 2025

Keywords

Comments

a(13) and a(15) not found up to k = 3300, a(14) = 729, a(16) = 2016, a(17) = 1000, a(18) = 216.

Examples

			a(3)=64, because 64^4 = 9^3 + 58^3 + 255^3 = 9^3 + 183^3 + 220^3 = 22^3 + 57^3 + 255^3 and no integer less than 64 has 3 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^4, 3, 3],
          0 < #[[1]] < #[[2]] < #[[3]] &]}, {k, 400}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 5}][[All, 1]]

Extensions

a(13), a(15), a(19)-a(21) from Chai Wah Wu, Jul 08 2025
a(22)-a(27) from Chai Wah Wu, Jul 18 2025

A255018 Smallest number that is the sum of 3 nonnegative cubes in exactly n ways.

Original entry on oeis.org

4, 0, 216, 5104, 13896, 161568, 1259712, 2016496, 2562624, 14926248, 58995000, 34012224, 150547032, 471960000, 119095488, 1259712000, 952763904, 5159780352, 3974344704, 2176782336, 10077696000, 2985984000, 36330467328, 30723115968, 23887872000, 17414258688, 72825163776, 75686967000
Offset: 0

Views

Author

Alex Ratushnyak, Feb 25 2015

Keywords

Examples

			a(0) = 4 because the smallest number that cannot be represented as a sum of 3 nonnegative cubes is 4.
a(1) = 0 is the sum of three 0's.
a(2) = 216 = 3^3 + 4^3 + 5^3 = 6^3 + 0 + 0.
a(3) = 5104 = 1 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

Programs

  • Python
    TOP = 6000000
    a = [0]*TOP
    for b in range(TOP):
      b3 = b**3
      if b3*3>=TOP: break
      for c in range(b,TOP):
        c3 = b3 + c**3
        if c3>=TOP: break
        for d in range(c,TOP):
          res = c3 + d**3
          if res>=TOP: break
          a[res] += 1
    m = max(a)
    r = [-1] * (m+1)
    for i in range(TOP):
        if r[a[i]]==-1:  r[a[i]]=i
    print(r)

Extensions

More terms from Rémy Sigrist, Jul 14 2020

A347362 Smallest number which can be decomposed into exactly n sums of three distinct positive cubes, but cannot be decomposed into more than one such sum containing the same cube.

Original entry on oeis.org

36, 1009, 12384, 82278, 746992, 5401404, 15685704, 26936064, 137763072, 251066304, 857520000, 618817536, 3032856000, 2050677000, 6100691904, 36013192704, 16405416000, 96569712000, 48805535232, 131243328000, 611996202000, 201153672000
Offset: 1

Views

Author

Gleb Ivanov, Aug 29 2021

Keywords

Comments

No cube should appear in two or more sums. 5104 = 15^3 + 10^3 + 9^3 = 15^3 + 12^3 + 1^3 = 16^3 + 10^3 + 2^3 is not a(3), because 15^3 appears in more than one sum.

Examples

			a(1) = 36 = 1^3 + 2^3 + 3^3.
a(2) = 1009 = 1^3 + 2^3 + 10^3 = 4^3 + 6^3 + 9^3.
a(3) = 12384 = 1^3 + 6^3 + 23^3 = 2^3 + 12^3 + 22^3 = 15^3 + 16^3 + 17^3.
		

Crossrefs

Programs

  • Mathematica
    Monitor[Do[k=1;While[Length@Union@Flatten[p=PowersRepresentations[k,3,3]]!=n*3||Length@p!=n||MemberQ[Flatten@p,0],k++];Print@k,{n,10}],k] (* Giorgos Kalogeropoulos, Sep 03 2021 *)

Extensions

a(13)-a(15) from Jon E. Schoenfield, Sep 02 2021
a(16)-a(22) from Gleb Ivanov, Sep 12 2021

A374693 a(n) is the smallest number which can be represented as the sum of 3 distinct nonzero fourth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

98, 6578, 811538, 5978882, 1289202642, 292965218, 779888018, 5745705602, 105760443698, 49511121842, 1872511131218, 281539574498, 17673688436978
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 17 2024

Keywords

Comments

a(16) = 7865870969138. - Michael S. Branicky, Jul 23 2024

Examples

			a(2) = 6578 = 1^4 + 2^4 + 9^4 = 3^4 + 7^4 + 8^4.
a(3) = 811538 = 4^4 + 23^4 + 27^4 = 7^4 + 21^4 + 28^4 = 12^4 + 17^4 + 29^4.
		

Crossrefs

Extensions

a(9)-a(12) from Michael S. Branicky, Jul 22 2024
a(13) from Michael S. Branicky, Jul 23 2024

A385409 a(n) is the smallest positive integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^2, where 0 < x < y < z < w has exactly n integer solutions.

Original entry on oeis.org

10, 42, 39, 153, 126, 276, 273, 312, 315, 476, 588, 336, 546, 777, 1053, 756, 1216, 1386, 1560, 1134, 1323, 1488, 1365, 1368, 1344, 1596, 2366, 2496, 2988, 1680, 2548, 1736, 2184, 3003, 3720, 2520, 3185, 3552, 2268, 3564, 4095, 3213, 4578, 4392, 5208, 4004, 4599, 5733
Offset: 1

Views

Author

Zhining Yang, Jun 27 2025

Keywords

Comments

Conjecture: a(n) exists for all n.

Examples

			a(4)=153, because 153^2 = 5^3 + 15^3 + 21^3 + 22^3 = 2^3 + 7^3 + 15^3 + 27^3 = 6^3 + 8^3 + 9^3 + 28^3 = 1^3 + 5^3 + 11^3 + 28^3 and no integer less than 153 has 4 solutions.
		

Crossrefs

Programs

  • Mathematica
    s = Table[{k, Length@Select[PowersRepresentations[k^2, 4, 3],
          0 < #[[1]] < #[[2]] < #[[3]] < #[[4]] &]}, {k, 500}];
    a = Table[SelectFirst[s, #[[2]] == k &], {k, 10}][[All, 1]]
Showing 1-10 of 10 results.