A025474 Exponent of the n-th prime power A000961(n).
0, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a025474 = a001222 . a000961 -- Reinhard Zumkeller, Aug 13 2013
-
Mathematica
Prepend[Table[ FactorInteger[q][[1, 2]], {q, Select[Range[1, 1000], PrimeNu[#] == 1 &]}], 0] (* Geoffrey Critzer, Feb 23 2018 *)
-
PARI
A025474_upto(N)=apply(bigomega, A000961_list(N)) \\ M. F. Hasler, Jun 16 2022
-
Python
A025474_upto = lambda N: [A001222(n) for n in A000961_list(N)] # M. F. Hasler, Jun 16 2022
-
Python
from sympy import prime, integer_nthroot, factorint def A025474(n): if n == 1: return 0 def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return list(factorint(m).values())[0] # Chai Wah Wu, Aug 15 2024
Formula
Extensions
Edited by M. F. Hasler, Jun 16 2022
Comments