cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025474 Exponent of the n-th prime power A000961(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of automorphisms on the field with order A000961(n). This group of automorphisms is cyclic of order a(n). - Geoffrey Critzer, Feb 23 2018

Crossrefs

Cf. A000961 (the prime powers), A025473 (prime root of these), A100995 (exponent of prime powers or 0 otherwise), A001222 (bigomega), A056798 (prime powers with even exponents).
Cf. A117331.

Programs

  • Haskell
    a025474 = a001222 . a000961 -- Reinhard Zumkeller, Aug 13 2013
    
  • Mathematica
    Prepend[Table[ FactorInteger[q][[1, 2]], {q,
    Select[Range[1, 1000], PrimeNu[#] == 1 &]}], 0] (* Geoffrey Critzer, Feb 23 2018 *)
  • PARI
    A025474_upto(N)=apply(bigomega, A000961_list(N)) \\ M. F. Hasler, Jun 16 2022
    
  • Python
    A025474_upto = lambda N: [A001222(n) for n in A000961_list(N)] # M. F. Hasler, Jun 16 2022
    
  • Python
    from sympy import prime, integer_nthroot, factorint
    def A025474(n):
        if n == 1: return 0
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return list(factorint(m).values())[0] # Chai Wah Wu, Aug 15 2024

Formula

a(n) = A100995(A000961(n)).
A000961(n) = A025473(n)^a(n); A056798(n) = A025473(n)^(2*a(n));
A192015(n) = a(n)*A025473(n)^(a(n)-1). - Reinhard Zumkeller, Jun 24 2011
a(n) = A001222(A000961(n)). - David Wasserman, Feb 16 2006

Extensions

Edited by M. F. Hasler, Jun 16 2022