cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025476 Prime root of n-th nontrivial prime power (A025475, A246547).

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 2, 7, 2, 3, 11, 5, 2, 13, 3, 2, 17, 7, 19, 2, 23, 5, 3, 29, 31, 2, 11, 37, 41, 43, 2, 3, 13, 47, 7, 53, 5, 59, 61, 2, 67, 17, 71, 73, 79, 3, 19, 83, 89, 2, 97, 101, 103, 107, 109, 23, 113, 11, 5, 127, 2, 7, 131, 137, 139, 3, 149, 151, 29, 157, 163, 167, 13, 31, 173, 179
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi;
    f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or
    op(2,opf) <= level then RETURN() fi; op(1,opf) end:
    A025476_list := n -> seq(cvm(i,1),i=1..n); # n is search limit
    A025476_list(30000);  # Peter Luschny, Sep 21 2011
    # Alternative:
    isA246547 := n -> n > 1 and not isprime(n) and type(n, 'primepower'):
    seq(ifactors(p)[2][1][1], p in select(isA246547, [$1..30000])); # Peter Luschny, Jul 15 2023
  • Mathematica
    Transpose[ Flatten[ FactorInteger[ Select[ Range[2, 30000], !PrimeQ[ # ] && Mod[ #, # - EulerPhi[ # ]] == 0 &]], 1]][[1]] (* Robert G. Wilson v *)
  • PARI
    forcomposite(n=4,10^5,if( ispower(n, , &p) && isprime(p), print1(p,", "))) \\ Joerg Arndt, Sep 11 2021
    
  • Python
    from sympy import primepi, integer_nthroot, primefactors
    def A025476(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return primefactors(kmax)[0] # Chai Wah Wu, Aug 15 2024