A025476 Prime root of n-th nontrivial prime power (A025475, A246547).
2, 2, 3, 2, 5, 3, 2, 7, 2, 3, 11, 5, 2, 13, 3, 2, 17, 7, 19, 2, 23, 5, 3, 29, 31, 2, 11, 37, 41, 43, 2, 3, 13, 47, 7, 53, 5, 59, 61, 2, 67, 17, 71, 73, 79, 3, 19, 83, 89, 2, 97, 101, 103, 107, 109, 23, 113, 11, 5, 127, 2, 7, 131, 137, 139, 3, 149, 151, 29, 157, 163, 167, 13, 31, 173, 179
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi; f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or op(2,opf) <= level then RETURN() fi; op(1,opf) end: A025476_list := n -> seq(cvm(i,1),i=1..n); # n is search limit A025476_list(30000); # Peter Luschny, Sep 21 2011 # Alternative: isA246547 := n -> n > 1 and not isprime(n) and type(n, 'primepower'): seq(ifactors(p)[2][1][1], p in select(isA246547, [$1..30000])); # Peter Luschny, Jul 15 2023
-
Mathematica
Transpose[ Flatten[ FactorInteger[ Select[ Range[2, 30000], !PrimeQ[ # ] && Mod[ #, # - EulerPhi[ # ]] == 0 &]], 1]][[1]] (* Robert G. Wilson v *)
-
PARI
forcomposite(n=4,10^5,if( ispower(n, , &p) && isprime(p), print1(p,", "))) \\ Joerg Arndt, Sep 11 2021
-
Python
from sympy import primepi, integer_nthroot, primefactors def A025476(n): def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return primefactors(kmax)[0] # Chai Wah Wu, Aug 15 2024