cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A025473 a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961).

Original entry on oeis.org

1, 2, 3, 2, 5, 7, 2, 3, 11, 13, 2, 17, 19, 23, 5, 3, 29, 31, 2, 37, 41, 43, 47, 7, 53, 59, 61, 2, 67, 71, 73, 79, 3, 83, 89, 97, 101, 103, 107, 109, 113, 11, 5, 127, 2, 131, 137, 139, 149, 151, 157, 163, 167, 13, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

David W. Wilson, Dec 11 1999

Keywords

Comments

This sequence is related to the cyclotomic sequences A013595 and A020500, leading to the procedure used in the Mathematica program. - Roger L. Bagula, Jul 08 2008
"LCM numeral system": a(n+1) is radix for index n, n >= 0; a(-n+1) is 1/radix for index n, n < 0. - Daniel Forgues, May 03 2014
This is the LCM-transform of A000961; same as A014963 with all 1's (except a(1)) removed. - David James Sycamore, Jan 11 2024

References

  • Paul J. McCarthy, Algebraic Extensions of Fields, Dover books, 1976, pages 40, 69

Crossrefs

Programs

  • Haskell
    a025473 = a020639 . a000961 -- Reinhard Zumkeller, Aug 14 2013
    
  • Maple
    cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi;
    f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or
    op(2,opf) <= level then RETURN() fi; op(1,opf) end:
    A025473_list := n -> [1,seq(cvm(i,0),i=1..n)];
    A025473_list(240); # Peter Luschny, Sep 21 2011
  • Mathematica
    a = Join[{1}, Flatten[Table[If[PrimeQ[Apply[Plus, CoefficientList[Cyclotomic[n, x], x]]], Apply[Plus, CoefficientList[Cyclotomic[n, x], x]], {}], {n, 1, 1000}]]] (* Roger L. Bagula, Jul 08 2008 *)
    Join[{1}, First@ First@# & /@ FactorInteger@ Select[Range@ 240, PrimePowerQ]] (* Robert G. Wilson v, Aug 17 2017 *)
  • PARI
    print1(1); for(n=2,1e3, if(isprimepower(n,&p), print1(", "p))) \\ Charles R Greathouse IV, Apr 28 2014
    
  • Python
    from sympy import primepi, integer_nthroot, primefactors
    def A025473(n):
        if n == 1: return 1
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return primefactors(m)[0] # Chai Wah Wu, Aug 15 2024
  • Sage
    def A025473_list(n) :
        R = [1]
        for i in (2..n) :
            if i.is_prime_power() :
                R.append(prime_divisors(i)[0])
        return R
    A025473_list(239) # Peter Luschny, Feb 07 2012
    

Formula

a(n) = A006530(A000961(n)) = A020639(A000961(n)). - David Wasserman, Feb 16 2006
From Reinhard Zumkeller, Jun 26 2011: (Start)
A000961(n) = a(n)^A025474(n).
A056798(n) = a(n)^(2*A025474(n)).
A192015(n) = A025474(n)*a(n)^(A025474(n)-1). (End)
a(1) = A051451(1) ; for n > 1, a(n) = A051451(n)/A051451(n-1). - Peter Munn, Aug 11 2024

Extensions

Offset corrected by David Wasserman, Dec 22 2008

A048148 Distinct elements of A045948.

Original entry on oeis.org

1, 2, 4, 12, 24, 120, 360, 720, 5040, 10080, 30240, 332640, 1663200, 3326400, 43243200, 129729600, 259459200, 4410806400, 30875644800, 586637251200, 1173274502400, 26985313555200, 134926567776000, 404779703328000, 11738611396512000, 363896953291872000
Offset: 1

Views

Author

Keywords

Comments

A001222(a(n)) = n - 1. - Eric Desbiaux, Apr 05 2018

Crossrefs

Programs

  • Mathematica
    Map[Function[m, Exp[Sum[MangoldtLambda@ n, {n, m}]]/Product[x, {x, Prime@ Range@ PrimePi@ m}]], Select[Range[10^3], Or[# == 1, And[PrimePowerQ@ #, ! PrimeQ@ #]] &] ] (* Michael De Vlieger, Aug 01 2017, after Fred Daniel Kline at A045948 *)
  • Python
    # uses program from A025476
    from math import prod
    def A048148(n): return prod(A025476(i) for i in range(1,n)) # Chai Wah Wu, Aug 15 2024

Formula

A025476(n) = a(n+1) / a(n). - Eric Desbiaux, Jun 22 2013

Extensions

More terms from James Sellers, May 03 2000
More terms from Michael De Vlieger, Aug 01 2017

A216153 The partial products of a(n) are the distinct values of the exponential of the von Mangoldt function modified by restricting the divisors to prime divisors (A205957).

Original entry on oeis.org

1, 2, 6, 4, 3, 10, 24, 14, 15, 8, 54, 40, 21, 22, 96, 5, 26, 9, 56, 900, 16, 33, 34, 35, 216, 38, 39, 160, 1764, 88, 135, 46, 384, 7, 250, 51, 104, 486, 55, 224, 57, 58, 7200, 62, 189, 32, 65, 4356, 136, 69, 4900, 864, 74, 375, 152, 77, 6084, 640, 27, 82
Offset: 1

Views

Author

Peter Luschny, Sep 02 2012

Keywords

Comments

The partial products of a(n) are A216152(n) which are the distinct values of the 'prime lcm(n)' A205957.
Let b(n) denote the nonprime numbers A018252(n).
If n = 1 then a(n) = b(n) = 1
else if a(n) < b(n) then
a(n) is a cototient of consecutive pure powers of primes (A053211),
b(n) is a prime power with exponent > 1 (A025475),
b(n)/a(n) is a prime root of n-th nontrivial prime power (A025476);
else if a(n) > b(n) then
b(n) is a number which is neither a prime power nor a semiprime (A102467);
else if a(n) = b(n) then
a(n) is the product of two distinct primes (A006881).

Crossrefs

Programs

  • Mathematica
    A205957[n_] := Exp[-Sum[ MoebiusMu[p]*Log[k/p], {k, 1, n}, {p, FactorInteger[k][[All, 1]]}]]; nonPrime[1] = 1; nonPrime[n_] := Which[k0 = k /. FindRoot[ n + PrimePi[k] == k , {k, n}] // Floor; n+PrimePi[k0] == k0, k0 , n+PrimePi[k0+1] == k0+1, k0+1, n+PrimePi[k0+2] == k0+2, k0+2, True, k0]; a[1] = 1; a[n_] := A205957[nonPrime[n]] / A205957[nonPrime[n-1]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jun 27 2013 *)
  • Sage
    def A216153(n):
        if n == 1 : return 1
        return A205957(A018252(n))/A205957(A018252(n-1))

Formula

a(n) = A205957(A018252(n))/A205957(A018252(n-1)) for n > 1, a(1) = 1.

A068389 Differences between the primes generating the n-th prime power.

Original entry on oeis.org

0, 1, -1, 3, -2, -1, 5, -5, 1, 8, -6, -3, 11, -10, -1, 15, -10, 12, -17, 21, -18, -2, 26, 2, -29, 9, 26, 4, 2, -41, 1, 10, 34, -40, 46, -48, 54, 2, -59, 65, -50, 54, 2, 6, -76, 16, 64, 6, -87, 95, 4, 2, 4, 2, -86, 90, -102, -6, 122, -125, 5, 124, 6, 2, -136
Offset: 0

Views

Author

Jon Perry, Mar 04 2002

Keywords

Examples

			The first prime powers are 4, 8, 9, 16, 25, ... These are generated by 2, 2, 3, 2, 5, ... (A025476) and the differences are 0, 1, -1, 3, ...
		

Crossrefs

Cf. A025476.

Extensions

More terms from Sean A. Irvine, Feb 13 2024
Showing 1-4 of 4 results.