cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049614 n! divided by its squarefree kernel.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 24, 24, 192, 1728, 17280, 17280, 207360, 207360, 2903040, 43545600, 696729600, 696729600, 12541132800, 12541132800, 250822656000, 5267275776000, 115880067072000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000
Offset: 0

Views

Author

Keywords

Comments

Also product of composite numbers less than or equal to n. - Benoit Cloitre, Aug 18 2002
Also n! divided by n primorial (or n!/n#). - Cino Hilliard, Mar 26 2006
From Alexander R. Povolotsky and Peter J. C. Moses, Aug 27 2007: (Start)
It appears that a(n) = smallest positive number m such that the sequence b(n) = { m (i^1 + 1!) (i^2 + 2!) ... (i^n + n!) / n! : i >= 0 } takes integral values. [It would be nice to have a proof of this! - N. J. A. Sloane] Cf. A064808 (for n=2), A131682 (for n=3), A131683 (for n=4), A131527 (for n=5), A131684 (for n=6), A131528. See also A129995, A131685. (End)
It appears that every term > 4 is divisible by 24. - Alexander R. Povolotsky, Oct 18 2007
The above comment is correct since each term divides the next. - Charles R Greathouse IV, Jan 16 2012
When n is not a prime number, then a(n)=m*n, where m is some integer >0; such a(n) make up the A036691 Otherwise, when n is a prime number, then a(n)=a(k), where k is the largest nonprime number preceding n (kAlexander R. Povolotsky, Aug 21 2012

Examples

			n = 11: 11! = 39916800 = 2310*17280 and 2310=2*3*5*7*11.
		

Crossrefs

Programs

  • Magma
    A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
    [A049614(n): n in [0..40]]; // G. C. Greubel, Jul 21 2023
    
  • Maple
    primorial := n -> mul(k, k=select(isprime, [$1..n]));
    A049614 := n -> factorial(n)/primorial(n);
    seq(A049614(i),i=0..24); # Peter Luschny, Feb 16 2013
  • Mathematica
    Table[n!/Product[ Prime[i], {i, PrimePi[n]}], {n, 24}]
  • PARI
    a(n)=prod(i=1,n,i^if(isprime(i),0,1))
    
  • PARI
    a(n)=n!/prod(i=1,primepi(n),prime(i)) \\ Charles R Greathouse IV, Aug 30 2012
    
  • SageMath
    def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n)))
    [A049614(n) for n in range(41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = A000142(n)/A034386(n).

Extensions

Edited by N. J. A. Sloane, Oct 07 2007
Offset set to 0, a(0)=1 prepended to data, Peter Luschny, Feb 16 2013

A045948 a(n) = A003418(n)/A034386(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 24, 24, 24, 120, 120, 360, 360, 360, 360, 360, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 720, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040, 5040
Offset: 1

Views

Author

Keywords

Examples

			n=11: lcm(1..11) = 27720 = 8*9*5*7*11 = 2310*12. A034386(11)=2310, so the quotient is 12. Thus a(11) = 12.
		

Crossrefs

Programs

  • Mathematica
    Table[Exp[Sum[MangoldtLambda[n], {n, 1, m}]]/ Product[x, {x, Prime[Range[PrimePi[m]]]}], {m, 1, 57}] (* Fred Daniel Kline, Apr 02 2015 *)
  • PARI
    a(n)=lcm([1..n])/prod(i=1,primepi(n),prime(i)) \\ Charles R Greathouse IV, Apr 02 2015; corrected by Michel Marcus, Dec 26 2020

A025476 Prime root of n-th nontrivial prime power (A025475, A246547).

Original entry on oeis.org

2, 2, 3, 2, 5, 3, 2, 7, 2, 3, 11, 5, 2, 13, 3, 2, 17, 7, 19, 2, 23, 5, 3, 29, 31, 2, 11, 37, 41, 43, 2, 3, 13, 47, 7, 53, 5, 59, 61, 2, 67, 17, 71, 73, 79, 3, 19, 83, 89, 2, 97, 101, 103, 107, 109, 23, 113, 11, 5, 127, 2, 7, 131, 137, 139, 3, 149, 151, 29, 157, 163, 167, 13, 31, 173, 179
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi;
    f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or
    op(2,opf) <= level then RETURN() fi; op(1,opf) end:
    A025476_list := n -> seq(cvm(i,1),i=1..n); # n is search limit
    A025476_list(30000);  # Peter Luschny, Sep 21 2011
    # Alternative:
    isA246547 := n -> n > 1 and not isprime(n) and type(n, 'primepower'):
    seq(ifactors(p)[2][1][1], p in select(isA246547, [$1..30000])); # Peter Luschny, Jul 15 2023
  • Mathematica
    Transpose[ Flatten[ FactorInteger[ Select[ Range[2, 30000], !PrimeQ[ # ] && Mod[ #, # - EulerPhi[ # ]] == 0 &]], 1]][[1]] (* Robert G. Wilson v *)
  • PARI
    forcomposite(n=4,10^5,if( ispower(n, , &p) && isprime(p), print1(p,", "))) \\ Joerg Arndt, Sep 11 2021
    
  • Python
    from sympy import primepi, integer_nthroot, primefactors
    def A025476(n):
        def f(x): return int(n-1+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return primefactors(kmax)[0] # Chai Wah Wu, Aug 15 2024
Showing 1-3 of 3 results.