A117683 Triangle T(n,k) = A049614(n)/(A049614(k)*A049614(n-k)), read by rows.
1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 4, 4, 1, 1, 6, 6, 24, 6, 6, 1, 1, 6, 6, 6, 6, 1, 1, 8, 8, 48, 12, 48, 8, 8, 1, 9, 72, 72, 108, 108, 72, 72, 9, 1, 10, 90, 720, 180, 1080, 180, 720, 90, 10, 1, 1, 10, 90, 180, 180, 180, 180, 90, 10, 1, 1, 12, 12, 120, 270, 2160, 360, 2160, 270, 120, 12, 12, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 1, 1; 4, 4, 4, 1; 1, 4, 4, 1, 1; 6, 6, 24, 6, 6, 1; 1, 6, 6, 6, 6, 1, 1; 8, 8, 48, 12, 48, 8, 8, 1; 9, 72, 72, 108, 108, 72, 72, 9, 1;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >; A117683:= func< n,k | A049614(n)/(A049614(k)*A049614(n-k)) >; [A117683(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 21 2023
-
Mathematica
f[n_]:= If[PrimeQ[n], 1, n]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *) T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]); Table[T[n, k], {n,12}, {k,n}]//Flatten
-
PARI
primorial(n)=prod(i=1,primepi(n),prime(i)) T(n,m)=binomial(n,m)*primorial(m)*primorial(n-m)/primorial(n) \\ Charles R Greathouse IV, Jan 16 2012
-
SageMath
def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1, 1+prime_pi(n))) def A117683(n,k): return A049614(n)/(A049614(k)*A049614(n-k)) flatten([[A117683(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 21 2023
Formula
Extensions
Edited by the Associate Editors of the OEIS, Aug 18 2009
Edited by G. C. Greubel, Jul 21 2023
Comments