cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A117683 Triangle T(n,k) = A049614(n)/(A049614(k)*A049614(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 4, 4, 1, 1, 6, 6, 24, 6, 6, 1, 1, 6, 6, 6, 6, 1, 1, 8, 8, 48, 12, 48, 8, 8, 1, 9, 72, 72, 108, 108, 72, 72, 9, 1, 10, 90, 720, 180, 1080, 180, 720, 90, 10, 1, 1, 10, 90, 180, 180, 180, 180, 90, 10, 1, 1, 12, 12, 120, 270, 2160, 360, 2160, 270, 120, 12, 12, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 12 2006

Keywords

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  1,  1;
  4,  4,  4,   1;
  1,  4,  4,   1,   1;
  6,  6, 24,   6,   6,  1;
  1,  6,  6,   6,   6,  1,  1;
  8,  8, 48,  12,  48,  8,  8,  1;
  9, 72, 72, 108, 108, 72, 72,  9,  1;
		

Crossrefs

Programs

  • Magma
    A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
    A117683:= func< n,k | A049614(n)/(A049614(k)*A049614(n-k)) >;
    [A117683(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 21 2023
    
  • Mathematica
    f[n_]:= If[PrimeQ[n], 1, n];
    cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
    T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]);
    Table[T[n, k], {n,12}, {k,n}]//Flatten
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    T(n,m)=binomial(n,m)*primorial(m)*primorial(n-m)/primorial(n) \\ Charles R Greathouse IV, Jan 16 2012
    
  • SageMath
    def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1, 1+prime_pi(n)))
    def A117683(n,k): return A049614(n)/(A049614(k)*A049614(n-k))
    flatten([[A117683(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jul 21 2023

Formula

T(n,k) = A049614(n)/(A049614(k)*A049614(n-k)), for 1 <= k <= n, n >= 1.
Sum_{k=1..n} T(n, k) = A117684(n).

Extensions

Edited by the Associate Editors of the OEIS, Aug 18 2009
Edited by G. C. Greubel, Jul 21 2023

A118687 A triangular array made from polynomial coefficients of A049614.

Original entry on oeis.org

1, 1, -1, 1, -2, 1, 1, -3, 3, -1, 1, -4, 6, -4, 1, 1, -8, 22, -28, 17, -4, 1, -12, 54, -116, 129, -72, 16, 1, -36, 342, -1412, 2913, -3168, 1744, -384, 1, -60, 1206, -9620, 36801, -73080, 77776, -42240, 9216, 1, -252, 12726, -241172, 1883841, -7138872, 14109136, -14975232, 8119296, -1769472
Offset: 0

Views

Author

Roger L. Bagula, May 20 2006

Keywords

Comments

Same as an alternating sign Pascal's triangle up to row n=4.

Examples

			Triangle begins as:
  1;
  1, -1;
  1, -2,  1;
  1, -3,  3, -1;
  1, -4,  6, -4,  1;
  1, -8, 22,-28, 17, -4;
		

Crossrefs

Programs

  • Mathematica
    A049614[n_]:= n!/Product[Prime[i], {i, 1, PrimePi[n]}];
    Join[{{1}}, Table[CoefficientList[Product[1 - A049614[k]*x, {k, 0, n}], x], {n, 0, 12}]]//Flatten
  • Sage
    def A049614(n): return factorial(n)/product( nth_prime(j) for j in (1..prime_pi(n)) )
    [1]+flatten([[( product(1 - A049614(k)*x for k in (0..n)) ).series(x,n+2).list()[k] for k in (0..n+1)] for n in (0..12)]) # G. C. Greubel, Feb 05 2021

Formula

T(n, k) = coefficients of Product_{k=0..n} (1 - A049614(k)*x), with T(0, 0) = 1.

Extensions

Edited by G. C. Greubel, Feb 05 2021

A078744 Numbers k such that A049614(k) + A000040(k) is prime.

Original entry on oeis.org

1, 4, 6, 7, 8, 13, 17, 18, 21, 41, 86, 101, 144, 368, 1232, 1713, 2431, 2897, 6122, 6240, 6876
Offset: 1

Views

Author

Jason Earls, Dec 21 2002

Keywords

Crossrefs

Programs

  • PARI
    is(k) = ispseudoprime(prod(i=1, k, i^!isprime(i)) + prime(k)); \\ Jinyuan Wang, Jan 08 2021

Extensions

a(17)-a(18) from Jinyuan Wang, Jan 08 2021
a(19)-a(21) from Michael S. Branicky, Aug 10 2024

A078745 Numbers k such that A049614(k) - A000040(k) is prime.

Original entry on oeis.org

6, 7, 8, 15, 23, 36, 93, 117, 121, 131, 150, 310, 433, 896, 1226, 4439, 11452, 13069
Offset: 1

Views

Author

Jason Earls, Dec 21 2002

Keywords

Crossrefs

Programs

  • PARI
    is(k) = ispseudoprime(prod(i=1, k, i^!isprime(i)) - prime(k)); \\ Jinyuan Wang, Jan 09 2021

Extensions

a(16) from Ryan Propper, Feb 12 2007
a(17)-a(18) from Michael S. Branicky, Aug 10 2024

A082956 Difference between C(n) and the first prime after C(n), where C(n) = A049614(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 5, 1, 5, 11, 11, 7, 7, 1, 11, 29, 29, 17, 17, 1, 47, 17, 17, 37, 79, 1, 31, 397, 397, 47, 47, 53, 127, 1, 53, 67, 67, 41, 23, 23, 23, 41, 41, 113, 107, 31, 31, 79, 157, 61, 353, 157, 157, 601, 31, 1, 29, 409, 409, 31, 31, 181, 41, 139, 47, 151, 151, 47, 47, 109
Offset: 1

Views

Author

Jason Earls, May 26 2003

Keywords

Comments

All terms here are either 1 or prime.

Crossrefs

Cf. A049614.

Programs

  • Mathematica
    A082956[n_] := NextPrime[#] - # & [n!/Product[Prime[i], {i, PrimePi[n]}]];
    Array[A082956, 100] (* Paolo Xausa, Aug 02 2024 *)
  • PARI
    a(n)= my(C=n!/prod(i=1, primepi(n), prime(i))); nextprime(C) - C; \\ Michel Marcus, Jul 31 2024

A117878 Triangle T(n,k) = A034386(n)*A049614(k) - 1 read by rows.

Original entry on oeis.org

0, 1, 1, 5, 5, 5, 5, 5, 5, 23, 29, 29, 29, 119, 119, 29, 29, 29, 119, 119, 719, 209, 209, 209, 839, 839, 5039, 5039, 209, 209, 209, 839, 839, 5039, 5039, 40319, 209, 209, 209, 839, 839, 5039, 5039, 40319, 362879, 209, 209, 209, 839, 839, 5039, 5039, 40319, 362879
Offset: 1

Views

Author

Roger L. Bagula, May 02 2006

Keywords

Examples

			The triangle starts in row n=1 as:
    0;
    1,   1;
    5,   5,   5;
    5,   5,   5,  23;
   29,  29,  29, 119, 119;
   29,  29,  29, 119, 119,  719;
  209, 209, 209, 839, 839, 5039, 5039;
  209, 209, 209, 839, 839, 5039, 5039, 40319;
  209, 209, 209, 839, 839, 5039, 5039, 40319, 362879;
  209, 209, 209, 839, 839, 5039, 5039, 40319, 362879, 3628799;
		

Crossrefs

Programs

Formula

T(n, k) = A034386(n)*A049614(k) - 1.
T(n, k) = k! * A034386(n)/A034386(k) - 1 = n! * A049614(k)/A049614(n) - 1. - G. C. Greubel, Feb 06 2021

Extensions

Index in definition and offset corrected by Assoc. Eds. of the OEIS - Jun 15 2010

A117736 factorial(n) - A049614(n).

Original entry on oeis.org

0, 0, 1, 5, 20, 116, 696, 5016, 40128, 361152, 3611520, 39899520, 478794240, 6226813440, 87175388160, 1307630822400, 20922093158400, 355686731366400, 6402361164595200, 121645087867699200, 2432901757353984000
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2006

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := If[PrimeQ[n] == True, 1, n] cf[0] = 1; cf[n_Integer?Positive] := cf[n] = f[n]*cf[n - 1] g[n_] := If[PrimeQ[n] == True, n, 1] p[0] = 1; p[n_Integer?Positive] := p[n] = g[n]*p[n - 1] Table[n! - cf[n], {n, 0, 20}]

Formula

a(n) =n!- A049614(n) = A000142(n)-A049614(n).

Extensions

Edited by the Assoc. Eds. of the OEIS, Jun 27 2010

A131978 A049614(n)/A131685(n).

Original entry on oeis.org

1, 1, 1, 4, 4, 24, 24, 192, 1728, 17280, 17280, 207360, 207360, 414720, 6220800, 99532800, 696729600, 12541132800, 12541132800, 250822656000, 5267275776000, 10534551552000, 10534551552000, 252829237248000, 1264146186240000, 12641461862400000, 3754514173132800000
Offset: 1

Views

Author

Keywords

Comments

Conjectured to be always integral.
It appears that every term > 4 is divisible by 3 - Alexander R. Povolotsky, Oct 18 2007

A172985 Triangle T(n,m) = A049614(n)/ (A049614(m)*A049614(n-m)) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 1, 1, 6, 6, 24, 6, 6, 1, 1, 1, 6, 6, 6, 6, 1, 1, 1, 8, 8, 48, 12, 48, 8, 8, 1, 1, 9, 72, 72, 108, 108, 72, 72, 9, 1, 1, 10, 90, 720, 180, 1080, 180, 720, 90, 10, 1, 1, 1, 10, 90, 180, 180, 180, 180, 90, 10, 1, 1, 1, 12, 12, 120, 270
Offset: 0

Views

Author

Roger L. Bagula, Feb 06 2010

Keywords

Comments

Row sums are: 1, 2, 3, 4, 14, 12, 50, 28, 142, 524, 3082,...

Examples

			1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 4, 4, 4, 1;
1, 1, 4, 4, 1, 1;
1, 6, 6, 24, 6, 6, 1;
1, 1, 6, 6, 6, 6, 1, 1;
1, 8, 8, 48, 12, 48, 8, 8, 1;
1, 9, 72, 72, 108, 108, 72, 72, 9, 1;
1, 10, 90, 720, 180, 1080, 180, 720, 90, 10, 1;
		

Programs

  • Mathematica
    c[n_] := Product[If[i == 0, 1, If[PrimeQ[i], 1, i]], {i, 0, n}];
    t[n_, m_] := c[n]/(c[m]*c[n - m]);
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Extensions

Definition simplified by the Assoc. Editors of the OEIS, Mar 05 2010

A036691 Compositorial numbers: product of first n composite numbers.

Original entry on oeis.org

1, 4, 24, 192, 1728, 17280, 207360, 2903040, 43545600, 696729600, 12541132800, 250822656000, 5267275776000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000, 48808684250726400000, 1366643159020339200000
Offset: 0

Views

Author

Keywords

Comments

a(A196415(n)) = A141092(n) * A053767(A196415(n)). - Reinhard Zumkeller, Oct 03 2011
For n>11, A000142(n) < a(n) < A002110(n). - Chayim Lowen, Aug 18 2015
For n = {2,3,4}, a(n) is testably a Zumkeller number (A083207). For n > 4, a(n) is of the form 2^e_1 * p_2^e_2 * … * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) < e_1. Therefore, 2^e * p_m^e_m is primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number. Therefore, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m is a Zumkeller number. Therefore, for n > 1, a(n) is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 04 2020

Examples

			a(3) = c(1)*c(2)*c(3) = 4*6*8 = 192.
		

Crossrefs

Cf. primorial numbers A002110. Distinct members of A049614. See also A049650, A060880.
Cf. A092435 (subsequence: A092435(n) = a(prime(n)-n-1)). - Chayim Lowen, Jul 23 2015

Programs

  • Haskell
    a036691_list = scanl1 (*) a002808_list -- Reinhard Zumkeller, Oct 03 2011
    
  • Maple
    A036691 := proc(n)
            mul(A002808(i),i=1..n) ;
    end proc: # R. J. Mathar, Oct 03 2011
  • Mathematica
    Composite[n_] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Table[ Product[ Composite[i], {i, 1, n}], {n, 0, 18}] (* Robert G. Wilson v, Sep 13 2003 *)
    nn=50;cnos=Complement[Range[nn],Prime[Range[PrimePi[nn]]]];Rest[FoldList[ Times,1,cnos]] (* Harvey P. Dale, May 19 2011 *)
    A036691 = Union[Table[n!/(Times@@Prime[Range[PrimePi[n]]]), {n, 29}]] (* Alonso del Arte, Sep 21 2011 *)
    Join[{1},FoldList[Times,Select[Range[30],CompositeQ]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 14 2019 *)
  • PARI
    a(n)=my(c,p);c=4;p=1;while(n>0,if(!isprime(c),p=p*c;n=n-1);c=c+1);p \\ Ralf Stephan, Dec 21 2013
    
  • Python
    from sympy import factorial, primepi, primorial, composite
    def A036691(n):
        return factorial(composite(n))//primorial(primepi(composite(n))) if n > 0 else 1 # Chai Wah Wu, Sep 08 2020

Formula

From Chayim Lowen, Jul 23 - Aug 05 2015: (Start)
a(n) = Product_{k=1..A002808(n)-n-1} prime(k)^(A085604(A002808(n),k)-1).
Sum_{k >= 1} 1/a(k) = 1.2975167655550616507663335821769... is to this sequence as e is to the factorials. (End)

Extensions

Corrected and extended by Niklas Eriksen (f95-ner(AT)nada.kth.se) and N. J. A. Sloane
Showing 1-10 of 32 results. Next