A117684 Row sums of A117683.
1, 2, 3, 13, 11, 49, 27, 141, 523, 3081, 923, 5509, 1371, 7617, 24391, 84933, 14795, 110329, 20859, 142101, 499843, 1858209, 241211, 2312077, 8417451, 70482153, 251680159, 935093181, 95916299, 1102272481, 131510523, 1270525629, 4572551611, 17189356473
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A117683.
Programs
-
Magma
A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >; [(&+[Binomial(n,k)*A034386(k)*A034386(n-k)/A034386(n): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Jul 21 2023
-
Mathematica
f[n_]:= If[PrimeQ[n], 1, n]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *) T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]); a[n_]:= a[n]= Sum[T[n,k], {k,n}]; Table[a[n], {n,40}]
-
SageMath
@CachedFunction def A034386(n): return product(nth_prime(j) for j in range(1, 1+prime_pi(n))) def A117684(n): return sum(binomial(n,k)*A034386(k)*A034386(n-k)/A034386(n) for k in range(1,n+1)) [A117684(n) for n in range(1,41)] # G. C. Greubel, Jul 21 2023
Formula
a(n) = Sum_{k=1..n} A117683(n,k).
Extensions
Description simplified, offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010
Comments