cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025479 Largest exponents of perfect powers (A001597).

Original entry on oeis.org

2, 2, 3, 2, 4, 2, 3, 5, 2, 2, 6, 4, 2, 2, 3, 7, 2, 2, 2, 3, 2, 5, 8, 2, 2, 3, 2, 2, 2, 2, 9, 2, 2, 4, 2, 6, 2, 2, 2, 2, 3, 10, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 11, 2, 7, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 12, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 8, 2, 3, 2, 2, 2
Offset: 1

Views

Author

Keywords

Comments

Greatest common divisor of all prime-exponents in canonical factorization of n-th perfect power. - Reinhard Zumkeller, Oct 13 2002
Asymptotically, 100% of the terms are 2, since the density of cubes and higher powers among the squares and higher powers is 0. - Daniel Forgues, Jul 22 2014

Crossrefs

Programs

  • Haskell
    a025479 n = a025479_list !! (n-1)  -- a025479_list is defined in A001597.
    -- Reinhard Zumkeller, Mar 28 2014, Jul 15 2012
    
  • Maple
    N:= 10^6: # to get terms corresponding to all perfect powers <= N
    V:= Vector(N,storage=sparse);
    V[1]:= 2:
    for p from 2 to ilog2(N) do
      V[[seq(i^p,i=2..floor(N^(1/p)))]]:= p
    od:
    r,c,A := ArrayTools:-SearchArray(V):
    convert(A,list); # Robert Israel, Apr 25 2017
  • Mathematica
    Prepend[DeleteCases[#, 0], 2] &@ Table[If[Set[e, GCD @@ #[[All, -1]]] > 1, e, 0] &@ FactorInteger@ n, {n, 10^4}] (* Michael De Vlieger, Apr 25 2017 *)
  • PARI
    print1(2,", "); for(k=2, 3^8, if(j=ispower(k),print1(j,", "))) \\ Hugo Pfoertner, Jan 01 2019

Formula

a(n) = A052409(A001597(n)). - Reinhard Zumkeller, Oct 13 2002
A001597(n) = A025478(n)^a(n). - Reinhard Zumkeller, Mar 28 2014

Extensions

Definition corrected by Daniel Forgues, Mar 07 2009