A025479 Largest exponents of perfect powers (A001597).
2, 2, 3, 2, 4, 2, 3, 5, 2, 2, 6, 4, 2, 2, 3, 7, 2, 2, 2, 3, 2, 5, 8, 2, 2, 3, 2, 2, 2, 2, 9, 2, 2, 4, 2, 6, 2, 2, 2, 2, 3, 10, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 11, 2, 7, 3, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 2, 12, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 8, 2, 3, 2, 2, 2
Offset: 1
Links
- Daniel Forgues, Table of n, a(n) for n=1..10000
Programs
-
Haskell
a025479 n = a025479_list !! (n-1) -- a025479_list is defined in A001597. -- Reinhard Zumkeller, Mar 28 2014, Jul 15 2012
-
Maple
N:= 10^6: # to get terms corresponding to all perfect powers <= N V:= Vector(N,storage=sparse); V[1]:= 2: for p from 2 to ilog2(N) do V[[seq(i^p,i=2..floor(N^(1/p)))]]:= p od: r,c,A := ArrayTools:-SearchArray(V): convert(A,list); # Robert Israel, Apr 25 2017
-
Mathematica
Prepend[DeleteCases[#, 0], 2] &@ Table[If[Set[e, GCD @@ #[[All, -1]]] > 1, e, 0] &@ FactorInteger@ n, {n, 10^4}] (* Michael De Vlieger, Apr 25 2017 *)
-
PARI
print1(2,", "); for(k=2, 3^8, if(j=ispower(k),print1(j,", "))) \\ Hugo Pfoertner, Jan 01 2019
Formula
Extensions
Definition corrected by Daniel Forgues, Mar 07 2009
Comments