cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025537 a(n) = (1/s(1) + 1/s(2) + ... + 1/s(n+1)) * LCM{1, 2, ..., n}, where s(k) = LCM{1,2,...,k}/k = A002944(k).

Original entry on oeis.org

1, 2, 5, 17, 35, 181, 182, 1278, 2559, 7687, 7688, 84580, 84581, 1099567, 1099582, 1099590, 2199181, 37386095, 37386096, 710335844, 710335865, 710335887, 710335888, 16337725448, 16337725453, 81688627291, 81688627300, 245065881928, 245065881929
Offset: 0

Views

Author

Keywords

Examples

			n=4: LCM{1,2,3,4} = 12, so a(4) = 12*(1/1 + 1/1 + 1/2 + 1/3 + 1/12) = 12*35/12 = 35. - _N. J. A. Sloane_, Sep 04 2019
		

Crossrefs

Programs

  • PARI
    s(n) = lcm([1..n])/n; \\ A002944
    a(n) = lcm([1..n])*sum(k=1, n+1, 1/s(k)); \\ Michel Marcus, Sep 04 2019

Formula

a(n) = A003418(n) * Sum_{k=1..n+1} 1/A002944(k). - Sean A. Irvine, Sep 04 2019

Extensions

Name improved by Sean A. Irvine, Sep 04 2019 and N. J. A. Sloane, Sep 04 2019