cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025551 a(n) = 3^n*(3^n + 1)/2.

Original entry on oeis.org

1, 6, 45, 378, 3321, 29646, 266085, 2392578, 21526641, 193720086, 1743421725, 15690618378, 141215033961, 1270933711326, 11438398618965, 102945573221778, 926510115949281, 8338590914403366, 75047317842209805, 675425859417626778
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> Binomial(3^n+1,2) ); # G. C. Greubel, Jan 08 2020
  • Magma
    [Binomial(3^n+1,2): n in [0..20]]; // G. C. Greubel, Jan 08 2020
    
  • Maple
    seq( binomial(3^n +1,2), n=0..20); # G. C. Greubel, Jan 08 2020
  • Mathematica
    LinearRecurrence[{12,-27}, {1,6}, 20] (* G. C. Greubel, Jan 08 2020 *)
    Table[3^n(3^n+1)/2,{n,0,20}] (* Harvey P. Dale, Mar 13 2022 *)
  • PARI
    Vec( (1-6*x)/((1-3*x)*(1-9*x)) + O(x^66) ) \\ Joerg Arndt, Sep 01 2013
    
  • Sage
    [binomial(3^n+1,2) for n in (0..20)] # G. C. Greubel, Jan 08 2020
    

Formula

From Philippe Deléham, Jul 11 2005: (Start)
Binomial transform of A081342.
6th binomial transform of (1, 0, 9, 0, 81, 0, 729, 0, . . ).
Inverse binomial transform of A081343.
a(n) = 12*a(n-1) - 27*a(n-2), a(0) = 1, a(1) = 6.
G.f.: (1-6*x)/((1-3*x)*(1-9*x)).
E.g.f.: exp(7*x)*cosh(3*x). (End)
a(n) = ((6+sqrt(9))^n + (6-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = Sum_{k=1..3^n} k. - Joerg Arndt, Sep 01 2013