A025583 Composite numbers that are not the sum of 2 primes.
27, 35, 51, 57, 65, 77, 87, 93, 95, 117, 119, 121, 123, 125, 135, 143, 145, 147, 155, 161, 171, 177, 185, 187, 189, 203, 205, 207, 209, 215, 217, 219, 221, 237, 245, 247, 249, 255, 261, 267, 275, 287, 289, 291, 297, 299, 301, 303, 305, 321, 323, 325, 327, 329, 335, 341
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Partition
- Eric Weisstein's World of Mathematics, Twin Composites
- Index entries for sequences related to Goldbach conjecture
Programs
-
Haskell
a025583 n = a025583_list !! (n-1) a025583_list = filter f a002808_list where f x = all (== 0) $ map (a010051 . (x -)) $ takeWhile (< x) a000040_list -- Reinhard Zumkeller, Oct 15 2014
-
Mathematica
f[n_] := (p = 0; pn = PrimePi[n]; Do[ If[n == Prime[i] + Prime[k], p = p + 1; If[p > 2, Break[]]], {i, 1, pn}, {k, i, pn}]; p ); Select[Range[2, 400], ! PrimeQ[#] && f[#] == 0 & ] (* Jean-François Alcover, Mar 07 2011 *) upto=350;With[{c=PrimePi[upto]},Complement[Range[4,upto], Prime[Range[ c]], Union[Total/@Tuples[Prime[Range[c]],{2}]]]] (* Harvey P. Dale, Jul 14 2011 *) Select[Range[400],CompositeQ[#]&&Count[IntegerPartitions[#,{2}],?(AllTrue[ #,PrimeQ]&)]==0&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Feb 21 2021 *)
Comments