cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025613 Numbers of form 3^i*4^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 4, 9, 12, 16, 27, 36, 48, 64, 81, 108, 144, 192, 243, 256, 324, 432, 576, 729, 768, 972, 1024, 1296, 1728, 2187, 2304, 2916, 3072, 3888, 4096, 5184, 6561, 6912, 8748, 9216, 11664, 12288, 15552, 16384, 19683, 20736, 26244, 27648, 34992, 36864, 46656
Offset: 1

Views

Author

Keywords

Comments

Subsequence of 3-smooth numbers, cf. A003586.

Crossrefs

Subsequence of A003586.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a025613 n = a025613_list !! (n-1)
    a025613_list = f $ singleton 1
       where f s = m : (f $ insert (3*m) $ insert (4*m) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
    
  • Mathematica
    n = 10^5; Flatten[Table[3^i*4^j, {i, 0, Log[3, n]}, {j, 0, Log[4, n/3^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\1,3), N=3^n; while(N<=lim, listput(v, N); N<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 10 2015

Formula

Sum_{n>=1} 1/a(n) = (3*4)/((3-1)*(4-1)) = 2. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(3)*log(4)*n)) / sqrt(12). - Vaclav Kotesovec, Sep 24 2020
a(n) = 3^A025640(n) * 4^A025645(n). - R. J. Mathar, Jul 06 2025