cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A025629 Numbers of form 6^i*10^j with i, j >= 0.

Original entry on oeis.org

1, 6, 10, 36, 60, 100, 216, 360, 600, 1000, 1296, 2160, 3600, 6000, 7776, 10000, 12960, 21600, 36000, 46656, 60000, 77760, 100000, 129600, 216000, 279936, 360000, 466560, 600000, 777600, 1000000, 1296000, 1679616, 2160000, 2799360, 3600000, 4665600
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*10^j, {i, 0, Log[6, n]}, {j, 0, Log10[n/6^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=6)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = (6*10)/((6-1)*(10-1)) = 4/3. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(6)*log(10)*n)) / sqrt(60). - Vaclav Kotesovec, Sep 26 2020
a(n) = 6^A025663(n) * 10^A025688(n). - R. J. Mathar, Jul 06 2025

A108698 Numbers of the form (6^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 6, 11, 36, 66, 121, 216, 396, 726, 1296, 1331, 2376, 4356, 7776, 7986, 14256, 14641, 26136, 46656, 47916, 85536, 87846, 156816, 161051, 279936, 287496, 513216, 527076, 940896, 966306, 1679616, 1724976, 1771561, 3079296, 3162456
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 19 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108698 n = a108698_list !! (n-1)
    a108698_list = f $ singleton (1,0,0) where
       f s = y : f (insert (6 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^6; Flatten[Table[6^i*11^j, {i, 0, Log[6, n]}, {j, 0, Log[11, n/6^i]}]] // Sort (* Amiram Eldar, Oct 07 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*11)/((6-1)*(11-1)) = 33/25. - Amiram Eldar, Oct 07 2020
a(n) ~ exp(sqrt(2*log(6)*log(11)*n)) / sqrt(66). - Vaclav Kotesovec, Oct 07 2020

A025626 Numbers of form 6^i*7^j, with i, j >= 0.

Original entry on oeis.org

1, 6, 7, 36, 42, 49, 216, 252, 294, 343, 1296, 1512, 1764, 2058, 2401, 7776, 9072, 10584, 12348, 14406, 16807, 46656, 54432, 63504, 74088, 86436, 100842, 117649, 279936, 326592, 381024, 444528, 518616, 605052, 705894, 823543, 1679616, 1959552
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*7^j, {i, 0, Log[6, n]}, {j, 0, Log[7, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*7)/((6-1)*(7-1)) = 7/5. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(7)*n)) / sqrt(42). - Vaclav Kotesovec, Sep 25 2020
a(n) = 6^A025660(n) * 7^A025668(n). - R. J. Mathar, Jul 06 2025

A107710 Numbers of the form (6^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 6, 13, 36, 78, 169, 216, 468, 1014, 1296, 2197, 2808, 6084, 7776, 13182, 16848, 28561, 36504, 46656, 79092, 101088, 171366, 219024, 279936, 371293, 474552, 606528, 1028196, 1314144, 1679616, 2227758, 2847312, 3639168, 4826809, 6169176
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 10 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[6^i*13^j, {i, 0, Log[6, n]}, {j, 0, Log[13, n/6^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*13)/((6-1)*(13-1)) = 13/10. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(6)*log(13)*n)) / sqrt(78). - Vaclav Kotesovec, Sep 25 2020

A025614 Numbers of form 3^i*6^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 6, 9, 18, 27, 36, 54, 81, 108, 162, 216, 243, 324, 486, 648, 729, 972, 1296, 1458, 1944, 2187, 2916, 3888, 4374, 5832, 6561, 7776, 8748, 11664, 13122, 17496, 19683, 23328, 26244, 34992, 39366, 46656, 52488, 59049, 69984, 78732, 104976, 118098
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[3^i*6^j, {i, 0, Log[3, n]}, {j, 0, Log[6, n/3^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (3*6)/((3-1)*(6-1)) = 9/5. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(3)*log(6)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 26 2020
a(n) = 3^A025641(n) *6^A025657(n). - R. J. Mathar, Jul 06 2025

A025662 Exponent of 6 (value of i) in n-th number of form 6^i*9^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 6, 0, 5, 4, 3, 2, 7, 1, 6, 0, 5, 4, 3, 8, 2, 7, 1, 6, 0, 5, 4, 9, 3, 8, 2, 7, 1, 6, 0, 5, 10, 4, 9, 3, 8, 2, 7, 1, 6, 11, 0, 5, 10, 4, 9, 3, 8, 2, 7, 12, 1, 6, 11, 0, 5, 10, 4, 9, 3, 8, 13, 2, 7, 12, 1, 6, 11, 0, 5, 10, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025628.

A025680 Exponent of 9 (value of j) in n-th number of form 6^i*9^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 5, 1, 2, 3, 4, 0, 5, 1, 6, 2, 3, 4, 0, 5, 1, 6, 2, 7, 3, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 0, 9, 5, 1, 6, 2, 7, 3, 8, 4, 0, 9, 5, 1, 10, 6, 2, 7, 3, 8, 4, 0, 9, 5, 1, 10, 6, 2, 11, 7, 3, 8, 4, 0, 9, 5, 1, 10, 6, 2, 11, 7, 3, 12, 8, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025628.

A025718 Index of 6^n within sequence of numbers of form 6^i*9^j.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 21, 27, 34, 42, 51, 60, 70, 81, 93, 106, 120, 134, 149, 165, 182, 200, 218, 237, 257, 278, 300, 323, 346, 370, 395, 421, 448, 475, 503, 532, 562, 593, 624, 656, 689, 723, 758, 794, 830, 867, 905, 944, 984, 1024, 1065, 1107, 1150, 1194, 1239, 1284
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A025680. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A025628.

Programs

  • Maple
    with(priqueue):
    initialize(PQ):
    insert([-1,0,0],PQ):
    count:= 0: R:= NULL:
    for i from 1 while count < 100 do
      v:= extract(PQ);
    if v[3] = 0 then R:= R,i; count:= count+1; insert([v[1]*6,v[2]+1,0],PQ);
    insert([v[1]*9, v[2], v[3]+1],PQ)
    od:
    R; # Robert Israel, Jan 21 2024
Showing 1-8 of 8 results.