cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A108698 Numbers of the form (6^i)*(11^j), with i, j >= 0.

Original entry on oeis.org

1, 6, 11, 36, 66, 121, 216, 396, 726, 1296, 1331, 2376, 4356, 7776, 7986, 14256, 14641, 26136, 46656, 47916, 85536, 87846, 156816, 161051, 279936, 287496, 513216, 527076, 940896, 966306, 1679616, 1724976, 1771561, 3079296, 3162456
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 19 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108698 n = a108698_list !! (n-1)
    a108698_list = f $ singleton (1,0,0) where
       f s = y : f (insert (6 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^6; Flatten[Table[6^i*11^j, {i, 0, Log[6, n]}, {j, 0, Log[11, n/6^i]}]] // Sort (* Amiram Eldar, Oct 07 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (6*11)/((6-1)*(11-1)) = 33/25. - Amiram Eldar, Oct 07 2020
a(n) ~ exp(sqrt(2*log(6)*log(11)*n)) / sqrt(66). - Vaclav Kotesovec, Oct 07 2020

A108761 Numbers of the form (10^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 10, 13, 100, 130, 169, 1000, 1300, 1690, 2197, 10000, 13000, 16900, 21970, 28561, 100000, 130000, 169000, 219700, 285610, 371293, 1000000, 1300000, 1690000, 2197000, 2856100, 3712930, 4826809, 10000000, 13000000, 16900000
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 24 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a108761 n = a108761_list !! (n-1)
    a108761_list = f $ singleton (1,0,0) where
       f s = y : f (insert (10 * y, i + 1, j) $ insert (13 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
  • Mathematica
    n = 10^7; Flatten[Table[10^i*13^j, {i, 0, Log10[n]}, {j, 0, Log[13, n/10^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (10*13)/((10-1)*(13-1)) = 65/54. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(10)*log(13)*n)) / sqrt(130). - Vaclav Kotesovec, Sep 25 2020

A107764 Numbers of the form (8^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 8, 13, 64, 104, 169, 512, 832, 1352, 2197, 4096, 6656, 10816, 17576, 28561, 32768, 53248, 86528, 140608, 228488, 262144, 371293, 425984, 692224, 1124864, 1827904, 2097152, 2970344, 3407872, 4826809, 5537792, 8998912, 14623232, 16777216
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[8^i*13^j, {i, 0, Log[8, n]}, {j, 0, Log[13, n/8^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (8*13)/((8-1)*(13-1)) = 26/21. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(8)*log(13)*n)) / sqrt(104). - Vaclav Kotesovec, Sep 25 2020

A108748 Numbers of the form (9^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 9, 13, 81, 117, 169, 729, 1053, 1521, 2197, 6561, 9477, 13689, 19773, 28561, 59049, 85293, 123201, 177957, 257049, 371293, 531441, 767637, 1108809, 1601613, 2313441, 3341637, 4782969, 4826809, 6908733, 9979281, 14414517, 20820969
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[9^i*13^j, {i, 0, Log[9, n]}, {j, 0, Log[13, n/9^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (9*13)/((9-1)*(13-1)) = 39/32. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(9)*log(13)*n)) / sqrt(117). - Vaclav Kotesovec, Sep 25 2020

A108771 Numbers of the form (12^i)*(13^j), with i, j >= 0.

Original entry on oeis.org

1, 12, 13, 144, 156, 169, 1728, 1872, 2028, 2197, 20736, 22464, 24336, 26364, 28561, 248832, 269568, 292032, 316368, 342732, 371293, 2985984, 3234816, 3504384, 3796416, 4112784, 4455516, 4826809, 35831808, 38817792, 42052608, 45556992
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jun 25 2005

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^8: # to get all terms <= N
    sort([seq(seq(12^i*13^j, j = 0 .. floor(log[13](N/12^i))), i=0..floor(log[12](N)))]); # Robert Israel, Jun 16 2019
  • Mathematica
    With[{max = 5*10^7}, Flatten[Table[12^i*13^j, {i, 0, Log[12, max]}, {j, 0, Log[13, max/12^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)

Formula

Sum_{n>=1} 1/a(n) = 13/11. - Amiram Eldar, Mar 29 2025

A109314 Numbers n such that prime(n) + n is a prime power (A246547).

Original entry on oeis.org

3, 5, 8, 9, 12, 86, 230, 503, 1170, 2660, 2772, 6288, 6572, 8858, 9590, 14870, 16332, 17708, 53132, 54540, 63890, 64908, 82830, 93068, 98132, 104726, 119298, 136502, 152198, 177918, 187040, 234650, 241682, 253118, 263930, 278970, 376680, 412440, 456110, 469034
Offset: 1

Views

Author

Zak Seidov and Robert G. Wilson v, Jun 25 2005

Keywords

Examples

			2660 is OK because prime(2660) + 2660 = 23909 + 2660 = 26569 = 163^2, 163 is prime.
		

Crossrefs

Cf. A025475 = powers of a prime but not prime, also nonprime n such that sigma(n)*phi(n) > (n-1)2; A107708 = values of q, A107709 = values of k; A107710 = values of prime (A109314(n)).

Programs

  • Maple
    ispp:= n -> not isprime(n) and nops(numtheory:-factorset(n))=1:
    p:= 1: Res:= NULL:
    for n from 1 to 10^6 do
      p:= nextprime(p);
      if ispp(n+p) then Res:= Res, n fi
    od:
    Res; # Robert Israel, Jun 08 2016
  • Mathematica
    lst = {}; fQ[n_] := Block[{pf = FactorInteger[n]}, (2-Length[pf])(pf[[1, 2]]-1) > 0]; Do[ If[ fQ[Prime[n] + n], Print[n]; AppendTo[lst, n]], {n, 456109}]; lst
  • PARI
    isok(n) = isprimepower(n+prime(n)) >= 2; \\ Michel Marcus, Jun 18 2017
  • Sage
    def np(n): return n+nth_prime(n)
    [n for n in (1..10000) if not np(n).is_prime() and np(n).is_prime_power()] # Giuseppe Coppoletta, Jun 08 2016
    

Formula

prime(n) + n = q^k, q is prime and k_Integer >= 2.
Showing 1-6 of 6 results.