cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025616 Numbers of form 3^i*10^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 9, 10, 27, 30, 81, 90, 100, 243, 270, 300, 729, 810, 900, 1000, 2187, 2430, 2700, 3000, 6561, 7290, 8100, 9000, 10000, 19683, 21870, 24300, 27000, 30000, 59049, 65610, 72900, 81000, 90000, 100000, 177147, 196830, 218700, 243000, 270000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a025616 n = a025616_list !! (n-1)
    a025616_list = f $ singleton (1,0,0) where
       f s = y : f (insert (3 * y, i + 1, j) $ insert (10 * y, i, j + 1) s')
             where ((y, i, j), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 15 2015
    
  • Mathematica
    n = 10^6; Flatten[Table[3^i*10^j, {i, 0, Log[3, n]}, {j, 0, Log10[n/3^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 10), N=10^n; while(N<=lim, listput(v, N); N*=3)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018
    
  • Python
    from sympy import integer_log
    def A025616(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(integer_log(x//10**i,3)[0]+1 for i in range(integer_log(x,10)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 25 2025

Formula

Sum_{n>=1} 1/a(n) = (3*10)/((3-1)*(10-1)) = 5/3. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(3)*log(10)*n)) / sqrt(30). - Vaclav Kotesovec, Sep 25 2020
a(n) = 3^A025644(n) *10^A025685(n). - R. J. Mathar, Jul 06 2025

A025700 Index of 3^n within sequence of numbers of form 3^i * 10^j.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 13, 17, 21, 26, 31, 37, 43, 50, 57, 65, 73, 82, 91, 101, 111, 122, 133, 144, 156, 168, 181, 194, 208, 222, 237, 252, 268, 284, 301, 318, 336, 354, 373, 392, 412, 432, 453, 474, 495, 517, 539, 562, 585, 609, 633, 658, 683, 709, 735, 762, 789, 817, 845, 874
Offset: 0

Views

Author

Keywords

Comments

First term different from A033638 is a(24) = 144 != A033638(24) = 145.
Positions of zeros in A025685. - R. J. Mathar, Jul 06 2025

Crossrefs

Programs

  • PARI
    a(n) = vecsearch(setbinop((i,j)->3^i * 10^j, [0..n], [0..logint(10^n, 3)]), 3^n); \\ Michel Marcus, Jun 24 2023

Extensions

Offset 0 from Michel Marcus, Jun 24 2023
Showing 1-2 of 2 results.