cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A025615 Numbers of form 3^i*8^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 8, 9, 24, 27, 64, 72, 81, 192, 216, 243, 512, 576, 648, 729, 1536, 1728, 1944, 2187, 4096, 4608, 5184, 5832, 6561, 12288, 13824, 15552, 17496, 19683, 32768, 36864, 41472, 46656, 52488, 59049, 98304, 110592, 124416, 139968, 157464, 177147, 262144
Offset: 1

Views

Author

Keywords

Comments

Subset of A003586 3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0. - Daniel Forgues, Feb 24 2011
Indices for which a term is a power of 3 are in A025699 and a power of 8 are in A025728- Bernard Schott, Dec 27 2021

Crossrefs

Programs

  • Mathematica
    lim = 262144; Select[Sort[Flatten[Table[3^i 8^j, {i, 0, Log[3, lim]}, {j, 0, Log[8, lim]}]]], # <=lim &] (* T. D. Noe, Mar 01 2012 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 3), N=3^n; while(N<=lim, listput(v, N); N<<=3)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = 12/7. - Amiram Eldar, Feb 18 2021
From Bernard Schott, Dec 27 2021: (Start)
a(A025699(n)) = 3^(n-1).
a(A025728(n)) = 8^(n-1). (End)
a(n) = 3^A025643(n) * 8^A025672(n). - R. J. Mathar, Jul 06 2025

A025699 Index of 3^n within sequence of numbers of form 3^i*8^j (A025615).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 111, 122, 134, 146, 159, 172, 186, 200, 215, 230, 246, 262, 279, 296, 314, 332, 351, 371, 391, 412, 433, 455, 477, 500, 523, 547, 571, 596, 621, 647, 673, 700, 727, 755, 784, 813, 843, 873, 904, 935
Offset: 1

Views

Author

Keywords

Comments

Not same as A002620.
The first 19 positive terms are the same, then a(20) = 111 while A002620(21) = 110. - Bernard Schott, Dec 31 2021
Positions of zeros in A025672. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A002620, A003586, A025615, A025728 (similar for 8^n).

Formula

A025615(a(n)) = 3^(n-1). - Bernard Schott, Dec 27 2021
Showing 1-2 of 2 results.