cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A025699 Index of 3^n within sequence of numbers of form 3^i*8^j (A025615).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 111, 122, 134, 146, 159, 172, 186, 200, 215, 230, 246, 262, 279, 296, 314, 332, 351, 371, 391, 412, 433, 455, 477, 500, 523, 547, 571, 596, 621, 647, 673, 700, 727, 755, 784, 813, 843, 873, 904, 935
Offset: 1

Views

Author

Keywords

Comments

Not same as A002620.
The first 19 positive terms are the same, then a(20) = 111 while A002620(21) = 110. - Bernard Schott, Dec 31 2021
Positions of zeros in A025672. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A002620, A003586, A025615, A025728 (similar for 8^n).

Formula

A025615(a(n)) = 3^(n-1). - Bernard Schott, Dec 27 2021

A025728 Index of 8^n within sequence of numbers of form 3^i*8^j (A025615).

Original entry on oeis.org

1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 110, 131, 154, 179, 206, 235, 266, 299, 334, 370, 408, 448, 490, 534, 580, 628, 678, 730, 783, 838, 895, 954, 1015, 1078, 1143, 1210, 1279, 1350, 1422, 1496, 1572, 1650, 1730, 1812, 1896, 1982, 2070, 2159, 2250, 2343, 2438
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A025643. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A025615, A025699 (similar for 3^n).

Formula

A025615(a(n)) = 8^(n-1). - Bernard Schott, Dec 27 2021

A025633 Numbers of form 8^i*9^j, with i, j >= 0.

Original entry on oeis.org

1, 8, 9, 64, 72, 81, 512, 576, 648, 729, 4096, 4608, 5184, 5832, 6561, 32768, 36864, 41472, 46656, 52488, 59049, 262144, 294912, 331776, 373248, 419904, 472392, 531441, 2097152, 2359296, 2654208, 2985984, 3359232, 3779136, 4251528, 4782969
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A025611 and A025615.

Programs

  • Mathematica
    n = 10^6; Flatten[Table[8^i*9^j, {i, 0, Log[8, n]}, {j, 0, Log[9, n/8^i]}]] // Sort (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 9), N=9^n; while(N<=lim, listput(v, N); N<<=3)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = (8*9)/((8-1)*(9-1)) = 9/7. - Amiram Eldar, Sep 25 2020
a(n) ~ exp(sqrt(2*log(8)*log(9)*n)) / sqrt(72). - Vaclav Kotesovec, Sep 25 2020
a(n) = 8^A025676(n) * 9^A025682(n). - R. J. Mathar, Jul 06 2025

A025672 Exponent of 8 (value of j) in n-th number of form 3^i*8^j.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 9, 8, 7, 6, 5, 4, 3, 2
Offset: 1

Views

Author

Keywords

Programs

Formula

a(n) = valuation(A025615(n),8) = valuation(A025615(n),2)/3 = A007814(A025615(n))/3. - M. F. Hasler, Feb 20 2012

Extensions

Incorrect formula deleted by Sean A. Irvine, Feb 20 2012

A025643 Exponent of 3 (value of i) in n-th number of form 3^i*8^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 2, 4, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 7, 0, 2, 4, 6, 8, 1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 11, 0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13, 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15, 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17, 0, 2, 4, 6, 8, 10
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^40: # include entries for all 3^i*8^j <= N
    map(t -> t[1],sort([seq(seq([i,j],j=0..floor(log[8](N/3^i))),i=0..floor(log[3](N)))],(s,t) -> 3^s[1]*8^s[2]<=3^t[1]*8^t[2]));
Showing 1-5 of 5 results.