cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025615 Numbers of form 3^i*8^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 8, 9, 24, 27, 64, 72, 81, 192, 216, 243, 512, 576, 648, 729, 1536, 1728, 1944, 2187, 4096, 4608, 5184, 5832, 6561, 12288, 13824, 15552, 17496, 19683, 32768, 36864, 41472, 46656, 52488, 59049, 98304, 110592, 124416, 139968, 157464, 177147, 262144
Offset: 1

Views

Author

Keywords

Comments

Subset of A003586 3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0. - Daniel Forgues, Feb 24 2011
Indices for which a term is a power of 3 are in A025699 and a power of 8 are in A025728- Bernard Schott, Dec 27 2021

Crossrefs

Programs

  • Mathematica
    lim = 262144; Select[Sort[Flatten[Table[3^i 8^j, {i, 0, Log[3, lim]}, {j, 0, Log[8, lim]}]]], # <=lim &] (* T. D. Noe, Mar 01 2012 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 3), N=3^n; while(N<=lim, listput(v, N); N<<=3)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = 12/7. - Amiram Eldar, Feb 18 2021
From Bernard Schott, Dec 27 2021: (Start)
a(A025699(n)) = 3^(n-1).
a(A025728(n)) = 8^(n-1). (End)
a(n) = 3^A025643(n) * 8^A025672(n). - R. J. Mathar, Jul 06 2025

A384688 Runs of t in the range 0 <= t <= k and the same parity as k, for successive k >= 0.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 2, 4, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 7, 0, 2, 4, 6, 8, 1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 11, 0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13, 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15, 0, 2, 4, 6, 8, 10, 12, 14, 16
Offset: 0

Views

Author

Kevin Ryde, Jun 07 2025

Keywords

Comments

The corresponding k is A055086(n), or k+1 = A000267(n).
A run is 0, 2, 4, ..., k when k even, or 1, 3, 5, ..., k when k odd, and has length floor(k/2) + 1.
Runs start at quarter squares n = A002620(k+1), with those beginning 0 at oblong numbers n = A002378(i) and those starting 1 at the squares n = (i+1)^2 (for i >= 0 in both cases).
Starts to differ from A025643 at n=109.

Examples

			Runs and their corresponding k = A055086(n) begin,
  n          = 0  1  2    4    6      9
  a(n)       = 0, 1, 0,2, 1,3, 0,2,4, 1,3,5, ...
  A055086(n) = 0, 1, 2,2, 3,3, 4,4,4, 5,5,5, ...
		

Crossrefs

Cf. A002620, A002378 (indices of 0's), A000290 (indices of 1's).

Programs

  • Mathematica
    ClearAll[a] a[n_Integer]:=Module[{s,r},s=Floor[Sqrt[n]]; r=n-s^2; If[rVincenzo Librandi, Jul 06 2025 *)
  • PARI
    a(n) = my(r,s=sqrtint(n,&r)); if(r
    				

Formula

a(n) = 2*r+1 if r < s or a(n) = 2*(r-s) otherwise, where square root and remainder n = s^2 + r being s=A000196(n), r=A053186(n).
a(n) = ceiling(A053186(4*n+1) / 2).
a(n) = A055086(n) - 2*A216607(n+1).
a(n) = 2*A055087(n) + A079813(n+1).

A025728 Index of 8^n within sequence of numbers of form 3^i*8^j (A025615).

Original entry on oeis.org

1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 110, 131, 154, 179, 206, 235, 266, 299, 334, 370, 408, 448, 490, 534, 580, 628, 678, 730, 783, 838, 895, 954, 1015, 1078, 1143, 1210, 1279, 1350, 1422, 1496, 1572, 1650, 1730, 1812, 1896, 1982, 2070, 2159, 2250, 2343, 2438
Offset: 1

Views

Author

Keywords

Comments

Positions of zeros in A025643. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A025615, A025699 (similar for 3^n).

Formula

A025615(a(n)) = 8^(n-1). - Bernard Schott, Dec 27 2021
Showing 1-3 of 3 results.