A263132
Positive values of m such that binomial(4*m - 1, m) is odd.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 32, 43, 44, 48, 64, 86, 88, 96, 128, 171, 172, 176, 192, 256, 342, 344, 352, 384, 512, 683, 684, 688, 704, 768, 1024, 1366, 1368, 1376, 1408, 1536, 2048, 2731, 2732, 2736, 2752, 2816, 3072, 4096, 5462, 5464, 5472, 5504
Offset: 1
1) Notice how this sequence can be read from Table 1 below by moving through the table in a sequence of 'knight moves' (1 down and 2 to the left) starting from the first row. For example, starting at 11 on the top row we move in a series of knights moves 11 -> 12 -> 16, then return to the top row at 22 and move 22 -> 24 -> 32, return to the top row at 43 and move 43 -> 44 -> 48 -> 64, then return to top row at 86 and so on.
........................................................
. Table 1: 4^n * ceiling(2^k/3) for n >= 0, k >= 1 .
........................................................
n\k| 1 2 3 4 5 6 7 8 9
---+----------------------------------------------------
0 | 1 2 3 6 11 22 43 86 171 ...
1 | 4 8 12 24 44 88 172 ...
2 | 16 32 48 96 176 ...
3 | 64 128 192 ...
4 | 256 ...
...
2) Notice how this sequence can be read from Table 2 below in a sequence of 'knight moves' (2 down and 1 to the left) starting from the first two rows. For example, starting at 43 in the first row we jump 43 -> 44 -> 48 -> 64, then return to the second row at 86 and jump 86 -> 88 -> 96 -> 128, followed by 171 -> 172 -> 176 -> 192 -> 256, and so on.
....................................................
. Table 2: 2^n * (2^(2*k + 1) + 1)/3, n,k >= 0 .
....................................................
n\k| 0 1 2 3 4 5
---+----------------------------------------------
0 | 1 3 11 43 171 683 ...
1 | 2 6 22 86 342 1366 ...
2 | 4 12 44 172 684 2732 ...
3 | 8 24 88 344 1368 5464 ...
4 | 16 48 176 688 2736 10928 ...
5 | 32 96 352 1376 5472 21856 ...
6 | 64 192 704 2752 10944 43712 ...
7 | 128 384 1408 5504 21888 87424 ...
8 | 256 ...
Other odd binomials:
A002450 (4*m+1,m),
A020988 (4*m+2,m),
A263133 (4*m+3,m),
A080674 (4*m+4,m),
A118113 (3*m-2,m),
A003714 (3*m,m).
-
[n: n in [1..6000] | Binomial(4*n-1, n) mod 2 eq 1]; // Vincenzo Librandi, Oct 12 2015
-
for n from 1 to 5000 do if mod(binomial(4*n-1, n), 2) = 1 then print(n) end if end do;
-
Select[Range[6000],OddQ[Binomial[4#-1,#]]&] (* Harvey P. Dale, Dec 26 2015 *)
-
for(n=1, 1e4, if (binomial(4*n-1, n) % 2 == 1, print1(n", "))) \\ Altug Alkan, Oct 11 2015
-
a(n) = my(r,s=sqrtint(4*n-3,&r)); (1<Kevin Ryde, Jun 14 2025
-
A263132_list = [m for m in range(1,10**6) if not ~(4*m-1) & m] # Chai Wah Wu, Feb 07 2016
A263133
Numbers m such that binomial(4*m + 3, m) is odd.
Original entry on oeis.org
0, 1, 2, 3, 5, 7, 10, 11, 15, 21, 23, 31, 42, 43, 47, 63, 85, 87, 95, 127, 170, 171, 175, 191, 255, 341, 343, 351, 383, 511, 682, 683, 687, 703, 767, 1023, 1365, 1367, 1375, 1407, 1535, 2047, 2730, 2731, 2735, 2751, 2815, 3071, 4095, 5461, 5463, 5471, 5503
Offset: 1
1) This sequence can be read from Table 1 below in a sequence of 'knight moves' (2 down and 1 to the left) starting from the first two rows. For example, starting at 42 in the first row we jump 42 -> 43 -> 47 -> 63, then return to the second row at 85 and jump 85 -> 87 -> 95 -> 127, followed by 170 -> 171 -> 175 -> 191 -> 255, and so on.
...........................................................
. Table 1. 2^n*ceiling((2^(2*k + 1) - 1)/3) - 1, n,k >= 0 .
...........................................................
n\k| 0 1 2 3 4 5
---+---------------------------------
0 | 0 2 10 42 170 682 ...
1 | 1 5 21 85 341 ...
2 | 3 11 43 171 683 ...
3 | 7 23 87 343 ...
4 | 15 47 175 687 ...
5 | 31 95 351 ...
6 | 63 191 703 ...
7 | 127 383 ...
8 | 255 767 ...
9 | 511 ...
...
The first row of the table is A020988. The columns of the table are obtained by repeatedly applying the transformation m -> 2*m + 1 to the entries in the first row.
2) Alternatively, this sequence can be read from Table 2 below by starting with a number on the top row and moving in a series of 'knight moves' (1 down and 2 to the left) through the table as far as you can, before returning to the next number in the top row and repeating the process. For example, starting at 10 in the first row we move 10 -> 11 -> 15, then return to the top row at 21 and move 21 -> 23 -> 31, before returning to the top row at 42 and so on.
........................................................
. Table 2. (4^n)*ceiling(2^k/3) - 1 for n >= 0, k >= 1 .
........................................................
n\k| 1 2 3 4 5 6 7 8 9 10
---+---------------------------------------------------------
0| 0 1 2 5 10 21 42 85 170 682...
1| 3 7 11 23 43 87 171 343 683 ...
2| 15 31 47 95 175 351 687 1375 ...
3| 63 127 191 383 703 1407 2751 5503 ...
4| 255 511 767 1535 2815 5631 11007 22015 ...
5| 1023 2047 3071 6143 11263 22527 44031 88063 ...
6| 4095 ...
...
The first row of the table is A000975. The columns of the table are obtained by repeatedly applying the transformation m -> 4*m + 3 to the entries in the first row.
Other odd binomials:
A263132 (4*m-1,m),
A002450 (4*m+1,m),
A020988 (4*m+2,m),
A080674 (4*m+4,m),
A118113 (3*m-2,m),
A003714 (3*m,m).
-
[n: n in [0..6000] | Binomial(4*n+3, n) mod 2 eq 1]; // Vincenzo Librandi, Oct 12 2015
-
for n from 1 to 4096 do if mod(binomial(4*n+3, n), 2) = 1 then print(n) end if end do;
-
Select[Range[0,5600],OddQ[Binomial[4#+3,#]]&] (* Harvey P. Dale, Apr 15 2019 *)
-
for(n=0, 1e4, if (binomial(4*n+3, n) % 2 == 1, print1(n", "))) \\ Altug Alkan, Oct 11 2015
-
a(n) = my(r,s=sqrtint(4*n-3,&r)); (1<Kevin Ryde, Jul 06 2025
-
A263133_list = [m for m in range(10**6) if not ~(4*m+3) & m] # Chai Wah Wu, Feb 07 2016
A173195
Values of k such that 4^x + 4^y + 4^z = k^2 with arbitrary integers x <= y <= z.
Original entry on oeis.org
3, 6, 9, 12, 18, 24, 33, 36, 48, 66, 72, 96, 129, 132, 144, 192, 258, 264, 288, 384, 513, 516, 528, 576, 768, 1026, 1032, 1056, 1152, 1536, 2049, 2052, 2064, 2112, 2304, 3072, 4098, 4104, 4128, 4224, 4608, 6144, 8193, 8196, 8208, 8256, 8448, 9216, 12288
Offset: 1
x = 0, y = 1 then z = 1, and k = 3.
x = 1, y = 2 then z = 2, and k = 6.
x = 0, y = 2 then z = 3, and k = 9.
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- J. M. De Koninck, A. Mercier, 1001 problèmes en théorie classique des nombres. Ellipses, 2004.
- H. N. Shapiro, Introduction to the Theory of Numbers, John Wiley & Sons, 1983.
-
for x from 0 to 1000 do :for y from x to 1000 do: n := evalf(2^x + 2^(2*y-x-1)): print (n) ; od :od :
-
Take[Union[Select[Sqrt[Flatten[Table[(2^x + 2^(2*y - x - 1))^2, {x, 0, 13}, {y, 0, 13}]]], IntegerQ]],49] (* Jean-François Alcover, Sep 13 2011 *)
Showing 1-3 of 3 results.
Comments