cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A025615 Numbers of form 3^i*8^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 8, 9, 24, 27, 64, 72, 81, 192, 216, 243, 512, 576, 648, 729, 1536, 1728, 1944, 2187, 4096, 4608, 5184, 5832, 6561, 12288, 13824, 15552, 17496, 19683, 32768, 36864, 41472, 46656, 52488, 59049, 98304, 110592, 124416, 139968, 157464, 177147, 262144
Offset: 1

Views

Author

Keywords

Comments

Subset of A003586 3-smooth numbers: numbers of the form 2^i*3^j with i, j >= 0. - Daniel Forgues, Feb 24 2011
Indices for which a term is a power of 3 are in A025699 and a power of 8 are in A025728- Bernard Schott, Dec 27 2021

Crossrefs

Programs

  • Mathematica
    lim = 262144; Select[Sort[Flatten[Table[3^i 8^j, {i, 0, Log[3, lim]}, {j, 0, Log[8, lim]}]]], # <=lim &] (* T. D. Noe, Mar 01 2012 *)
  • PARI
    list(lim)=my(v=List(), N); for(n=0, logint(lim\=1, 3), N=3^n; while(N<=lim, listput(v, N); N<<=3)); Set(v) \\ Charles R Greathouse IV, Jan 10 2018

Formula

Sum_{n>=1} 1/a(n) = 12/7. - Amiram Eldar, Feb 18 2021
From Bernard Schott, Dec 27 2021: (Start)
a(A025699(n)) = 3^(n-1).
a(A025728(n)) = 8^(n-1). (End)
a(n) = 3^A025643(n) * 8^A025672(n). - R. J. Mathar, Jul 06 2025

A216607 The sequence used to represent partition binary diagram as an array.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3
Offset: 1

Views

Author

Mircea Merca, Sep 10 2012

Keywords

Comments

This sequence differs from A025672 first at index n=110.

Crossrefs

Programs

  • Maple
    seq(floor((1/4)*ceil(sqrt(4*n))^2)-n,n=1..50)
  • PARI
    A216607(n)=floor((1/4)*ceil(sqrt(4*n))^2)-n;

Formula

a(n) = floor((1/4)*ceiling(sqrt(4*n))^2) - n.
a(n^2) = a(n^2+n) = 0.
From Szymon Lukaszyk, Oct 27 2023: (Start)
a(n) = (-n) mod round(sqrt(n)).
a(n) = (A167268(n) - 2)/4. (End)

A025643 Exponent of 3 (value of i) in n-th number of form 3^i*8^j.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 0, 2, 4, 1, 3, 5, 0, 2, 4, 6, 1, 3, 5, 7, 0, 2, 4, 6, 8, 1, 3, 5, 7, 9, 0, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 11, 0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13, 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15, 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17, 0, 2, 4, 6, 8, 10
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 10^40: # include entries for all 3^i*8^j <= N
    map(t -> t[1],sort([seq(seq([i,j],j=0..floor(log[8](N/3^i))),i=0..floor(log[3](N)))],(s,t) -> 3^s[1]*8^s[2]<=3^t[1]*8^t[2]));

A025699 Index of 3^n within sequence of numbers of form 3^i*8^j (A025615).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 111, 122, 134, 146, 159, 172, 186, 200, 215, 230, 246, 262, 279, 296, 314, 332, 351, 371, 391, 412, 433, 455, 477, 500, 523, 547, 571, 596, 621, 647, 673, 700, 727, 755, 784, 813, 843, 873, 904, 935
Offset: 1

Views

Author

Keywords

Comments

Not same as A002620.
The first 19 positive terms are the same, then a(20) = 111 while A002620(21) = 110. - Bernard Schott, Dec 31 2021
Positions of zeros in A025672. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A002620, A003586, A025615, A025728 (similar for 8^n).

Formula

A025615(a(n)) = 3^(n-1). - Bernard Schott, Dec 27 2021
Showing 1-4 of 4 results.