cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025769 Expansion of 1/((1-x)*(1-x^3)*(1-x^8)).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 61, 63, 65, 68, 70, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 99, 102, 105, 108, 111
Offset: 0

Views

Author

Keywords

Comments

Mark Underwood observed that the number of partitions into four nonzero squares of the squares of primes is given by A025428(A001248(n)) = a(prime(n)-4), cf. sequence A216374. - M. F. Hasler, Sep 16 2012
a(n) is the number of partitions of n into parts 1, 3, and 8. - Joerg Arndt, Apr 05 2024
a(n) = a(-12-n) for all n in Z using the floor definition. - Michael Somos, Apr 04 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ... - _Michael Somos_, Apr 04 2024
		

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^3)(1-x^8)),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,1,-1,0,0,0,1,-1,0,-1,1},{1,1,1,2,2,2,3,3,4,5,5,6},60] (* Harvey P. Dale, Nov 29 2012 *)
    a[ n_] := Floor[((n+6)^2/16 + 1)/3]; (* Michael Somos, Apr 04 2024 *)
  • PARI
    A025769(n)=((n+6)^2+16)\48  \\ M. F. Hasler, Sep 16 2012

Formula

a(n) = floor((x^2+12x+c)/48) with 51 <= c <= 58. - M. F. Hasler, Sep 16 2012
a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=2, a(5)=2, a(6)=3, a(7)=3, a(8)=4, a(9)=5, a(10)=5, a(11)=6, a(n)=a(n-1)+a(n-3)-a(n-4)+a(n-8)-a(n-9)- a(n-11)+ a(n-12). - Harvey P. Dale, Nov 29 2012