A025771 Expansion of 1/((1-x)*(1-x^3)*(1-x^11)).
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 42, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 82, 84, 86, 89
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1,0,0,0,0,0,0,1,-1,0,-1,1).
Programs
-
Maple
A025771 := proc(n) round(n^2/66 +5*n/22 +68/99 + A099837(n+3)/9) ; end proc: # R. J. Mathar, Aug 11 2012
-
Mathematica
A025771[n_] := Quotient[n*(n + 15) + 78, 66]; Array[A025771, 100, 0] (* Paolo Xausa, Aug 20 2025 *)
-
PARI
Vec(1/((1-x)*(1-x^3)*(1-x^11))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
Formula
a(n) = +a(n-1) +a(n-3) -a(n-4) +a(n-11) -a(n-12) -a(n-14) +a(n-15). - R. J. Mathar, Aug 21 2014
a(n) = floor((n^2 + 15*n + 78)/66). - Hoang Xuan Thanh, Aug 18 2025
Comments