A026007 Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.
1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0
Examples
For n = 4, we have 8 partitions 01: [4] 02: [4'] 03: [4''] 04: [4'''] 05: [3, 1] 06: [3', 1] 07: [3'', 1] 08: [2, 2']
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, A unified treatment of families of partition functions, La Matematica (2024). Preprint available as arXiv:2303.02240 [math.CO], 2023.
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 18.
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; add((-1)^(n/d+1)*d^2, d=divisors(n)) end: a:= proc(n) option remember; `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n) end: seq(a(n), n=0..45); # Alois P. Heinz, Aug 03 2013
-
Mathematica
a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *) nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
-
PARI
N=66; q='q+O('q^N); gf= prod(n=1,N, (1+q^n)^n ); Vec(gf) /* Joerg Arndt, Oct 06 2012 */
Formula
a(n) = (1/n)*Sum_{k=1..n} A078306(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
G.f.: Product_{m>=1} (1+x^m)^m. Weighout transform of natural numbers (A000027). Euler transform of A026741. - Franklin T. Adams-Watters, Mar 16 2006
a(n) ~ zeta(3)^(1/6) * exp((3/2)^(4/3) * zeta(3)^(1/3) * n^(2/3)) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where zeta(3) = A002117. - Vaclav Kotesovec, Mar 05 2015
Comments