cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083924 Characteristic function for A072795.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, May 13 2003

Keywords

Comments

The sequence obtained by counting the runs of 0- and 1-bits 1,2,1,2,3,5,9,14,28,... is essentially the sequence A000108 interleaved with the sequence A000245, which appears to be A026008.

Crossrefs

a(n) = A083923(A069770(n)). Used to compute A083926.

Formula

a(0) = 0, a(n>0) = 1 if A072771(n)=0, otherwise 0.

A368378 Arises from enumeration of a certain class of partial zig-zag knight's paths on the square grid.

Original entry on oeis.org

0, 1, 1, 2, 4, 5, 14, 14, 48, 42, 165, 132, 572, 429, 2002, 1430, 7072, 4862, 25194, 16796, 90440, 58786, 326876, 208012, 1188640, 742900, 4345965, 2674440, 15967980, 9694845, 58929450, 35357670, 218349120, 129644790, 811985790, 477638700, 3029594040
Offset: 0

Views

Author

N. J. A. Sloane, Feb 18 2024

Keywords

Comments

It would be nice to have a more precise definition.

Crossrefs

The two bisections are A000108 and A099376. The first differences are A026008.

Programs

  • Mathematica
    r = (1 - 2z^2 - Sqrt[1-4z^2]) / (2z^2);
    gf = (r^2 z + r u^2 + r u + 2 r z + z) / (z (1 - r u));
    Table[SeriesCoefficient[gf,{u,0,1},{z,0,n}], {n,0,50}] (* Andrei Zabolotskii, Jul 25 2025 *)

Formula

G.f.: (1/x + 1 + 2*R(x) + R(x)^2) * R(x), where R(x) = (1 - sqrt(1-4*x^2)) / (2*x^2) - 1. - Andrei Zabolotskii, Jul 25 2025

Extensions

Terms a(11) and beyond from Andrei Zabolotskii, Jul 25 2025

A165621 Riordan array (c(x^2)*(1+xc(x^2)), xc(x^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 5, 5, 4, 4, 1, 1, 5, 9, 9, 5, 5, 1, 1, 14, 14, 14, 14, 6, 6, 1, 1, 14, 28, 28, 20, 20, 7, 7, 1, 1, 42, 42, 48, 48, 27, 27, 8, 8, 1, 1, 42, 90, 90, 75, 75, 35, 35, 9, 9, 1, 1
Offset: 0

Views

Author

Paul Barry, Sep 22 2009

Keywords

Comments

Inverse of A165620. Row sums are A001405(n+1). Diagonal sums are A026008.
Factors as (1+xc(x^2),x)*(c(x^2),xc(x^2)). Transforms (-2)^n to a sequence with Hankel transform F(2n+1).
In general, the Hankel transform of r^n by this matrix will have a Hankel transform with g.f. (1-x)/(1+(r-1)x+x^2).

Examples

			Triangle begins
  1,
  1, 1,
  1, 1, 1,
  2, 2, 1, 1,
  2, 3, 3, 1, 1,
  5, 5, 4, 4, 1, 1,
  5, 9, 9, 5, 5, 1, 1,
  14, 14, 14, 14, 6, 6, 1, 1,
  14, 28, 28, 20, 20, 7, 7, 1, 1,
  42, 42, 48, 48, 27, 27, 8, 8, 1, 1
The production array of this matrix begins
  1, 1,
  0, 0, 1,
  1, 1, 0, 1,
  -1, 0, 1, 0, 1,
  1, 0, 0, 1, 0, 1,
  -1, 0, 0, 0, 1, 0, 1,
  1, 0, 0, 0, 0, 1, 0, 1,
  -1, 0, 0, 0, 0, 0, 1, 0, 1,
  1, 0, 0, 0, 0, 0, 0, 1, 0, 1
		

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    nmax = 10;
    M = PadRight[#, nmax+1]& /@ RiordanArray[(1-#)/(1-#^4)&, #/(1+#^2)&, nmax+1];
    T = Inverse[M];
    Table[T[[n+1, k+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the signed version of the triangle.
    def Signed_A165621_triangle(n) :
        D = [0]*(n+4); D[1] = 1
        b = False; h = 3
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] -= D[k+1]
            if b : print([D[z] for z in (2..h-2)])
            b = not b
    Signed_A165621_triangle(11) # Peter Luschny, May 01 2012

Formula

Number triangle T(n,k)=sum{j=0..n, b(n-j)*sum{i=0..k, (-1)^(k-i)*C(k,i)*sum{m=0..i, C(i,m)*(C(i-m,m+k)-C(i-m,i+k+2))}}} where b(n) is the sequence beginning with 1 followed by the aerated Catalan numbers: 1,1,0,1,0,2,0,5,0,14,...
Showing 1-3 of 3 results.