A026009 Triangular array T read by rows: T(n,0) = 1 for n >= 0; T(1,1) = 1; and for n >= 2, T(n,k) = T(n-1,k-1) + T(n-1,k) for k = 1,2,...,[(n+1)/2]; T(n,n/2 + 1) = T(n-1,n/2) if n is even.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 3, 1, 5, 10, 9, 1, 6, 15, 19, 9, 1, 7, 21, 34, 28, 1, 8, 28, 55, 62, 28, 1, 9, 36, 83, 117, 90, 1, 10, 45, 119, 200, 207, 90, 1, 11, 55, 164, 319, 407, 297, 1, 12, 66, 219, 483, 726, 704, 297, 1, 13, 78, 285, 702, 1209, 1430, 1001, 1, 14, 91, 363, 987, 1911, 2639, 2431, 1001
Offset: 0
Examples
From _Jonathon Kirkpatrick_, Jul 01 2016: (Start) Triangle begins: 1; 1, 1; 1, 2, 1; 1, 3, 3; 1, 4, 6, 3; 1, 5, 10, 9; 1, 6, 15, 19, 9; 1, 7, 21, 34, 28; 1, 8, 28, 55, 62, 28; 1, 9, 36, 83, 117, 90; 1, 10, 45, 119, 200, 207, 90; 1, 11, 55, 164, 319, 407, 297; 1, 12, 66, 219, 483, 726, 704, 297; 1, 13, 78, 285, 702, 1209, 1430, 1001; ... (End)
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
[1] cat [Binomial(n,k) - Binomial(n,k-3): k in [0..Floor((n+2)/2)], n in [1..15]]; // G. C. Greubel, Mar 18 2021
-
Mathematica
T[n_, k_]:= Binomial[n, k] - Binomial[n, k-3]; Join[{1}, Table[T[n, k], {n,14}, {k,0,Floor[(n+2)/2]}]//Flatten] (* G. C. Greubel, Mar 18 2021 *)
-
Sage
[1]+flatten([[binomial(n,k) - binomial(n,k-3) for k in (0..(n+2)//2)] for n in (1..15)]) # G. C. Greubel, Mar 18 2021
Formula
T(n, k) = binomial(n, k) - binomial(n, k-3). - Darko Marinov (marinov(AT)lcs.mit.edu), May 17 2001
Sum_{k=0..floor((n+2)/2)} T(n, k) = A026010(n). - G. C. Greubel, Mar 18 2021