cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026009 Triangular array T read by rows: T(n,0) = 1 for n >= 0; T(1,1) = 1; and for n >= 2, T(n,k) = T(n-1,k-1) + T(n-1,k) for k = 1,2,...,[(n+1)/2]; T(n,n/2 + 1) = T(n-1,n/2) if n is even.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 4, 6, 3, 1, 5, 10, 9, 1, 6, 15, 19, 9, 1, 7, 21, 34, 28, 1, 8, 28, 55, 62, 28, 1, 9, 36, 83, 117, 90, 1, 10, 45, 119, 200, 207, 90, 1, 11, 55, 164, 319, 407, 297, 1, 12, 66, 219, 483, 726, 704, 297, 1, 13, 78, 285, 702, 1209, 1430, 1001, 1, 14, 91, 363, 987, 1911, 2639, 2431, 1001
Offset: 0

Views

Author

Keywords

Examples

			From _Jonathon Kirkpatrick_, Jul 01 2016: (Start)
Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3;
  1,  4,  6,   3;
  1,  5, 10,   9;
  1,  6, 15,  19,   9;
  1,  7, 21,  34,  28;
  1,  8, 28,  55,  62,   28;
  1,  9, 36,  83, 117,   90;
  1, 10, 45, 119, 200,  207,   90;
  1, 11, 55, 164, 319,  407,  297;
  1, 12, 66, 219, 483,  726,  704,  297;
  1, 13, 78, 285, 702, 1209, 1430, 1001;
  ... (End)
		

Crossrefs

Sums involving this sequence: A026010, A027287, A027288, A027289, A027290, A027291, A027292.

Programs

  • Magma
    [1] cat [Binomial(n,k) - Binomial(n,k-3): k in [0..Floor((n+2)/2)], n in [1..15]]; // G. C. Greubel, Mar 18 2021
  • Mathematica
    T[n_, k_]:= Binomial[n, k] - Binomial[n, k-3];
    Join[{1}, Table[T[n, k], {n,14}, {k,0,Floor[(n+2)/2]}]//Flatten] (* G. C. Greubel, Mar 18 2021 *)
  • Sage
    [1]+flatten([[binomial(n,k) - binomial(n,k-3) for k in (0..(n+2)//2)] for n in (1..15)]) # G. C. Greubel, Mar 18 2021
    

Formula

T(n, k) = binomial(n, k) - binomial(n, k-3). - Darko Marinov (marinov(AT)lcs.mit.edu), May 17 2001
Sum_{k=0..floor((n+2)/2)} T(n, k) = A026010(n). - G. C. Greubel, Mar 18 2021