A026010
a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 2. Also a(n) = sum of numbers in row n+1 of array T defined in A026009.
Original entry on oeis.org
1, 2, 4, 7, 14, 25, 50, 91, 182, 336, 672, 1254, 2508, 4719, 9438, 17875, 35750, 68068, 136136, 260338, 520676, 999362, 1998724, 3848222, 7696444, 14858000, 29716000, 57500460, 115000920, 222981435, 445962870, 866262915, 1732525830, 3370764540
Offset: 0
The a(3) = 7 compositions of 5 in which the even parts appear as often at even positions as at odd positions are (5), (311), (131), (113), (221), (122), (11111). Missing are (41), (14), (32), (23), (212), (2111), (1211), (1121), (1112). - _Gus Wiseman_, Mar 17 2018
Cf.
A000712,
A001405,
A005774,
A045931,
A063886,
A097613,
A130780,
A171966,
A239241,
A299926,
A300061,
A300787,
A300788,
A300789.
-
[(&+[Binomial(Floor((n+k)/2), Floor(k/2)): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Nov 08 2018
-
Array[Sum[Binomial[Floor[(# + k)/2], Floor[k/2]], {k, 0, #}] &, 34, 0] (* Michael De Vlieger, May 16 2018 *)
Table[2^(-1 + n)*(((2 + 3*#)*Gamma[(1 + #)/2])/(Sqrt[Pi]*Gamma[2 + #/2]) &[n + Mod[n, 2]]), {n,0,40}] (* Peter Pein, Nov 08 2018 *)
Table[(1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*CatalanNumber[(2*n + 1 - (-1)^n)/4], {n, 0, 40}] (* G. C. Greubel, Nov 08 2018 *)
-
vector(40, n, n--; sum(k=0,n, binomial(floor((n+k)/2), floor(k/2)))) \\ G. C. Greubel, Nov 08 2018
A026013
a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n) = 4. Also a(n) = T(2n,n-1), where T is the array defined in A026009.
Original entry on oeis.org
1, 4, 15, 55, 200, 726, 2639, 9620, 35190, 129200, 476102, 1760673, 6533150, 24319050, 90795375, 339929880, 1275977670, 4801199400, 18106714050, 68430306750, 259129680264, 983085703116, 3736124441990, 14222020085880, 54221213973500
Offset: 1
-
[Binomial(2*n, n-1) - Binomial(2*n, n-4): n in [1..30]]; // G. C. Greubel, Mar 18 2021
-
Rest[CoefficientList[Series[(-1 + Sqrt[1 - 4*x])^3 * (1 - x) * (-1 + Sqrt[1 - 4*x] + 2*x) / (16*x^4), {x, 0, 20}], x]] (* Vaclav Kotesovec, Sep 03 2019 *)
With[{f = CatalanNumber}, Table[f[n+3] -4*f[n+2] +3*f[n+1] +Sum[f[j+1]*f[n-j-1], {j, 0, n-1}], {n,30}]] (* G. C. Greubel, Mar 18 2021 *)
-
[binomial(2*n, n-1) - binomial(2*n, n-4) for n in (1..30)] # G. C. Greubel, Mar 18 2021
A026014
a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n) = 6. Also a(n) = T(2n,n-2), where T is the array defined in A026009.
Original entry on oeis.org
1, 6, 28, 119, 483, 1911, 7448, 28764, 110466, 422807, 1615152, 6163885, 23514855, 89714835, 342411120, 1307613480, 4997082510, 19111589280, 73154916744, 280265589198, 1074685552094, 4124573481446, 15843809385168, 60914041121640
Offset: 2
-
[Binomial(2*n, n-2) - Binomial(2*n, n-5): n in [2..30]]; // G. C. Greubel, Mar 19 2021
-
Table[Binomial[2*n, n-2] - Binomial[2*n, n-5], {n, 2, 30}] (* G. C. Greubel, Mar 19 2021 *)
-
[binomial(2*n, n-2) - binomial(2*n, n-5) for n in (2..30)] # G. C. Greubel, Mar 19 2021
A026015
a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n) = 8. Also a(n) = T(2n,n-3), where T is the array defined in A026009.
Original entry on oeis.org
1, 8, 45, 219, 987, 4248, 17748, 72675, 293436, 1172908, 4653935, 18366075, 72186075, 282861360, 1105877880, 4316224860, 16825024134, 65525448960, 255024693434, 992116674142, 3858537980286, 15004402265424, 58343871881400
Offset: 3
-
[Binomial(2*n, n-3) - Binomial(2*n, n-6): n in [3..30]]; // G. C. Greubel, Mar 19 2021
-
Table[Binomial[2*n, n-3] - Binomial[2*n, n-6], {n, 3, 30}] (* G. C. Greubel, Mar 19 2021 *)
-
[binomial(2*n, n-3) - binomial(2*n, n-6) for n in (3..30)] # G. C. Greubel, Mar 19 2021
A026017
a(n) = number of (s(0), s(1), ..., s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n-1) = 5. Also a(n) = T(2n-1,n-2), where T is the array defined in A026009.
Original entry on oeis.org
1, 5, 21, 83, 319, 1209, 4550, 17068, 63954, 239666, 898909, 3375825, 12697035, 47833905, 180510210, 682341000, 2583591150, 9798281910, 37218303330, 141585223494, 539395269462, 2057771255210, 7860697923436, 30065829471048, 115135255095140, 441410428339972
Offset: 2
A026018
a(n) = number of (s(0), s(1), ..., s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 2, s(2n-1) = 7. Also a(n) = T(2n-1,n-3), where T is the array defined in A026009.
Original entry on oeis.org
1, 7, 36, 164, 702, 2898, 11696, 46512, 183141, 716243, 2788060, 10817820, 41880930, 161900910, 625272480, 2413491360, 9313307370, 35936613414, 138680365704, 535290282632, 2066802226236, 7983111461732, 30848211650592
Offset: 3
A026021
T(n,[ n/2 ]), where T is the array defined in A026009.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 19, 34, 62, 117, 207, 407, 704, 1430, 2431, 5070, 8502, 18122, 30056, 65246, 107236, 236436, 385662, 861764, 1396652, 3157325, 5088865, 11622015, 18642420, 42961470, 68624295, 159419670, 253706790, 593636670, 941630580
Offset: 0
A027287
Self-convolution of array T given by A026009.
Original entry on oeis.org
1, 2, 6, 15, 54, 118, 471, 973, 4128, 8262, 36481, 71534, 324876, 627926, 2911923, 5568348, 26241376, 49767432, 237550401, 447567059, 2158650078, 4045351674, 19679880649, 36716551814, 179920446576, 334415846660
Offset: 0
A027288
a(n) = Sum_{k=0..floor(n/2)} T(n,k) * T(n,k+1), with T given by A026009.
Original entry on oeis.org
1, 4, 12, 46, 145, 552, 1820, 6918, 23562, 89645, 312664, 1191885, 4232345, 16170728, 58229100, 222997812, 811985790, 3116622123, 11451785640, 44047806725, 163072988442, 628465576101, 2341484487832, 9040083756276, 33863310322100, 130957152428622
Offset: 0
A027289
a(n) = Sum_{k=0..floor(n/2)-1} T(n,k) * T(n,k+2), with T given by A026009.
Original entry on oeis.org
1, 3, 18, 55, 264, 847, 3744, 12465, 52868, 180895, 749220, 2617173, 10680656, 37915317, 153240864, 551019963, 2212417314, 8038946075, 32129224712, 117758845827, 469105048654, 1731917060158, 6882935960496, 25569740611270, 101442831429264, 378875492015643
Offset: 2
Showing 1-10 of 18 results.
Comments