cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026022 Triangular array T read by rows: T(n,0) = 1 for n >= 0; T(n,k) = C(n,k) for k = 1,2,...,n, for n = 1,2,3; and for n >= 4, T(n,k) = T(n-1,k-1) + T(n-1,k) for k = 1,2,...,[ (n+2)/2 ] and T(n,(n+3)/2) = T(n-1,(n+1)/2) if n is odd.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 5, 10, 10, 4, 1, 6, 15, 20, 14, 1, 7, 21, 35, 34, 14, 1, 8, 28, 56, 69, 48, 1, 9, 36, 84, 125, 117, 48, 1, 10, 45, 120, 209, 242, 165, 1, 11, 55, 165, 329, 451, 407, 165, 1, 12, 66, 220, 494, 780, 858, 572, 1, 13, 78, 286, 714, 1274, 1638, 1430, 572
Offset: 1

Views

Author

Keywords

Examples

			From _Philippe Deléham_, Mar 12 2013: (Start)
Triangle begins:
1
1, 1
1, 2, 1
1, 3, 3, 1
1, 4, 6, 4
1, 5, 10, 10, 4
1, 6, 15, 20, 14
1, 7, 21, 35, 34, 14
1, 8, 28, 56, 69, 48
1, 9, 36, 84, 125, 117, 48
1, 10, 45, 120, 209, 242, 165
1, 11, 55, 165, 329, 451, 407, 165
Pentagon arithmetic of Delannoy (in E. Lucas):
1, 1, 1, 1, 0
1, 2, 3, 4, 4, 0
1, 3, 6, 10, 14, 14, 0
1, 4, 10, 20, 34, 48, 48, 0
1, 5, 15, 35, 69, 117, 165, 165,
1, 6, 21, 56, 125, 242, 407, 572,
1, 7, 28, 84, 209, 451, 858, 1430  (End)
		

References

  • E. Lucas, Théorie des Nombres, Albert Blanchard, Paris, 1958,tome1, p.88

Programs

  • PARI
    {T(n, k) = if( 2*k < n+4, binomial( n, k) - binomial( n, k-4), 0)} /* Michael Somos, Jan 08 2012 */

Formula

T(n, k) = C(n, k) - C(n, k-4). - Ralf Stephan, Jan 09 2005
T(2n,n) = A026029(n). - Philippe Deléham, Mar 12 2013
T(2n-1,n) = A026016(n), n>0. - Philippe Deléham, Mar 12 2013