cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A026029 Number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n) = 3. Also T(2n,n), where T is defined in A026022.

Original entry on oeis.org

1, 2, 6, 20, 69, 242, 858, 3068, 11050, 40052, 145996, 534888, 1968685, 7276050, 26993490, 100490220, 375287550, 1405622460, 5278838100, 19873977240, 74994427170, 283595947284, 1074568266756, 4079184055640, 15511924233204, 59083160374952, 225384613313944
Offset: 0

Views

Author

Keywords

Comments

Hankel transform is A008619(n+1). - Paul Barry, May 11 2009

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x)*(-1 + Sqrt[1 - 4*x] + 2*x)^2 / (4*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 03 2019 *)

Formula

Expansion of (1+x^2*C^4)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
a(n) = Sum_{k=0..n} C(n, k)*Sum_{i=0..k} C(k, 2i)*A000108(i+1). - Paul Barry, Jul 18 2003
a(n) = Sum_{k=0..3} A039599(n,k) = A000108(n) + A000245(n) + A000344(n) + A000588(n) = A026012(n) + A000588(n). - Philippe Deléham, Nov 12 2008
a(n) = C(2n,n) - C(2n,n-4). - Paul Barry, May 11 2009
Conjecture: (n+4)*a(n) + 6*(-n-2)*a(n-1) + 4*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ 4^(n+2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
E.g.f.: exp(2*x)*(BesselI(0, 2*x) - BesselI(4, 2*x)). - Stefano Spezia, Jan 17 2024

A026023 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 3. Also a(n) = Sum{T(n,k), k = 0,1,...,[ (n+3)/2 ]}, where T is defined in A026022.

Original entry on oeis.org

1, 2, 4, 8, 15, 30, 56, 112, 210, 420, 792, 1584, 3003, 6006, 11440, 22880, 43758, 87516, 167960, 335920, 646646, 1293292, 2496144, 4992288, 9657700, 19315400, 37442160, 74884320, 145422675, 290845350, 565722720, 1131445440, 2203961430, 4407922860
Offset: 0

Views

Author

Keywords

Comments

a(n)/2^n is the probability that a random walker starting at x=4 and jumping +-1 with equal probability at each time step is not adsorbed at the boundary x=0 at time n. - Robert M. Ziff, Nov 10 2014

Crossrefs

Cf. A001791, A162551 (bisections).

Programs

  • Mathematica
    Module[{r=Range[0,20],b},Riffle[b=Binomial[2r+2,r],2b]] (* Paolo Xausa, Dec 14 2023 *)

Formula

a(2n) = C(2n+2, n), a(2n+1) = 2*a(2n).
E.g.f.: dif(Bessel_I(1,2x)+2*Bessel_I(2,2x)+Bessel_I(3,2x),x). - Paul Barry, Jun 09 2007
O.g.f.: -1/2*(-1+4*x^2+(1-8*x^2+20*x^4-16*x^6)^(1/2))/x^4/(2*x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
Conjecture: (n+4)*(n-1)*a(n) +(n-1)*(n+1)*a(n-1) -2*(n+1)*(2*n+1)*a(n-2) -4*(n-1)*(n+1)*a(n-3)=0. - R. J. Mathar, Sep 29 2012

Extensions

Definition corrected by Herbert Kociemba, May 08 2004

A026026 a(n) = number of (s(0), s(1), ..., s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n-1) = 4. Also a(n) = T(2n-1,n-1), where T is defined in A026022.

Original entry on oeis.org

1, 3, 10, 35, 125, 451, 1638, 5980, 21930, 80750, 298452, 1106921, 4118725, 15371475, 57528750, 215867880, 811985790, 3061229850, 11565545100, 43782423750, 166051490514, 630877833102, 2400830868860, 9150602070760, 34927775872500, 133502608167292
Offset: 2

Views

Author

Keywords

Formula

Expansion of (1+x^2*C^4)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
Conjecture: -(n+3)*(11*n-38)*a(n) +2*(35*n^2-86*n-102)*a(n-1) -4*(13*n-30)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Jun 22 2013

Extensions

Definition corrected by Herbert Kociemba, May 02 2004

A026027 a(n) = number of (s(0), s(1), ..., s(2n-1)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n-1) = 6. Also a(n) = T(2n-1,n-2), where T is defined in A026022.

Original entry on oeis.org

1, 5, 21, 84, 329, 1274, 4900, 18768, 71706, 273581, 1043119, 3976700, 15163785, 57848910, 220830360, 843621600, 3225477150, 12342901410, 47274639594, 181230395304, 695384769002, 2670587146260, 10265249568536, 39491671919840
Offset: 2

Views

Author

Keywords

Formula

C(2n-1, n-2) - C(2n-1, n-6). G.f.: (1+x^2C^4)*C^5, where C=(1-sqrt(1-4x))/(2x). - Ralf Stephan, Jan 09 2005
Conjecture: (13*n+118)*(n+5)*a(n) +(13*n^2-969*n-3490)*a(n-1) +2*(-203*n^2+1080*n+758)*a(n-2) +4*(73*n-182)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Jun 22 2013

A026030 a(n) = T(2n,n-1), where T is defined in A026022.

Original entry on oeis.org

1, 4, 15, 56, 209, 780, 2912, 10880, 40698, 152456, 572033, 2150040, 8095425, 30535260, 115377660, 436698240, 1655607390, 6286707000, 23908446510, 91057063344, 347281885818, 1326262602104, 5071418015120, 19415851639296, 74419447792340
Offset: 1

Views

Author

Keywords

Comments

a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n) = 5.

Examples

			x + 4*x^2 + 15*x^3 + 56*x^4 + 209*x^5 + 780*x^6 + 2912*x^7 + 10880*x^8 + ...
		

Crossrefs

Cf. A001075.

Programs

  • PARI
    {a(n) = binomial( 2*n, n-1) - binomial( 2*n, n-5)} /* Michael Somos, Jan 08 2012 */

Formula

a(n) = C(2n, n-1) - C(2n, n-5). G.f.: (1+x^2C^4)*C^4, where C=(1-sqrt(1-4x))/(2x). - Ralf Stephan, Jan 09 2005
G.f.: 2*x*(1-2*x) / ((1-2*x)*(1-4*x+x^2) + (1-x)*(1-3*x)*sqrt(1-4*x)). - Michael Somos, Jan 08 2012
Conjecture: (n+5)*a(n) -2*(5*n+16)*a(n-1) +(35*n+47)*a(n-2) +2*(-25*n+14)*a(n-3) +12*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 15 2014

A026031 a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n) = 7. Also a(n) = T(2n,n-2), where T is defined in A026022.

Original entry on oeis.org

1, 6, 28, 120, 494, 1988, 7888, 31008, 121125, 471086, 1826660, 7068360, 27313650, 105452700, 406923360, 1569869760, 6056194410, 23366193084, 90173331960, 348102883184, 1344324544156, 5193831553416, 20075820280544, 77637309982400
Offset: 2

Views

Author

Keywords

Programs

  • Mathematica
    Table[Binomial[2n,n-2]-Binomial[2n,n-6],{n,2,30}] (* Harvey P. Dale, May 28 2017 *)

Formula

C(2n, n-2) - C(2n, n-6). G.f.: (1+x^2C^4)*C^6, where C=(1-sqrt(1-4x))/(2x). - Ralf Stephan, Jan 09 2005
Conjecture: (n+6)*a(n) +10*(-n-4)*a(n-1) +2*(17*n+32)*a(n-2) +4*(-11*n+4)*a(n-3) +8*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 22 2013

A026034 T(n,[ n/2 ]), where T is defined in A026022.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 69, 125, 242, 451, 858, 1638, 3068, 5980, 11050, 21930, 40052, 80750, 145996, 298452, 534888, 1106921, 1968685, 4118725, 7276050, 15371475, 26993490, 57528750, 100490220, 215867880, 375287550, 811985790, 1405622460
Offset: 0

Views

Author

Keywords

Crossrefs

a(2n) = A026029(n), a(2n+1) = A026026(n+2).

A027294 Self-convolution of row n of array T given by A026022.

Original entry on oeis.org

1, 2, 6, 20, 56, 208, 493, 1974, 4336, 18258, 38380, 167464, 342056, 1532376, 3067156, 14022168, 27646080, 128438893, 250291902, 1178090212, 2274524200, 10822168448, 20736353110, 99564168884, 189575748320, 917316990660
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026022.

A027295 a(n) = Sum_{k=0..m-1} T(n,k) * T(n,k+1), where m=n for n=0,1 and m=floor((n+3)/2) for n >= 2, and T given by A026022.

Original entry on oeis.org

1, 4, 15, 52, 195, 676, 2555, 8976, 34098, 121448, 463067, 1669340, 6384287, 23251620, 89157557, 327523680, 1258803182, 4658150520, 17940605163, 66803546472, 257777882894, 965023761064, 3730202020650, 14029655954272, 54315578806820, 205120107930192
Offset: 1

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027296 a(n) = Sum_{k=0..floor((n-1)/2)} T(n,k) * T(n,k+2), with T given by A026022.

Original entry on oeis.org

1, 6, 22, 100, 345, 1470, 5096, 21120, 74175, 302698, 1076922, 4352140, 15660827, 62876490, 228468272, 913093664, 3345466023, 13326904266, 49176362780, 195434713432, 725586231766, 2878605745972, 10744342665072, 42571577779200, 159638882959595, 631933882236306
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A026022.

Extensions

More terms from Sean A. Irvine, Oct 26 2019
Showing 1-10 of 15 results. Next