A026044 a(n) = (d(n)-r(n))/2, where d = A026043 and r is the periodic sequence with fundamental period (1,1,0,0).
22, 33, 49, 70, 97, 132, 176, 229, 292, 367, 455, 556, 671, 802, 950, 1115, 1298, 1501, 1725, 1970, 2237, 2528, 2844, 3185, 3552, 3947, 4371, 4824, 5307, 5822, 6370, 6951, 7566, 8217, 8905, 9630, 10393, 11196, 12040, 12925, 13852, 14823, 15839, 16900, 18007, 19162, 20366, 21619, 22922, 24277
Offset: 5
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-7,8,-7,4,-1).
Programs
-
Mathematica
LinearRecurrence[{4,-7,8,-7,4,-1},{22,33,49,70,97,132},60] (* Harvey P. Dale, Apr 27 2019 *)
Formula
a(n)=(n + 5)*(2*n^2 + 11*n + 54)/12 - 1/4 - (1/4)*cos(Pi*n/2) - (1/4)*sin(Pi*n/2) [From Richard Choulet, Dec 13 2008]
G.f. x^5*( 22-55*x+71*x^2-71*x^3+50*x^4-15*x^5 ) / ( (x^2+1)*(x-1)^4 ). - R. J. Mathar, Jun 22 2013