cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026048 (d(n)-r(n))/5, where d = A026046 and r is the periodic sequence with fundamental period (1,0,4,0,0).

Original entry on oeis.org

15, 21, 28, 39, 52, 68, 88, 111, 140, 173, 211, 255, 304, 361, 424, 494, 572, 657, 752, 855, 967, 1089, 1220, 1363, 1516, 1680, 1856, 2043, 2244, 2457, 2683, 2923, 3176, 3445, 3728, 4026, 4340, 4669, 5016, 5379, 5759, 6157, 6572, 7007, 7460, 7932, 8424, 8935, 9468, 10021, 10595, 11191
Offset: 6

Views

Author

Keywords

Crossrefs

A152889 [From Richard Choulet, Dec 14 2008]

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{15,21,28,39,52,68,88,111},60] (* Harvey P. Dale, Apr 01 2018 *)

Formula

a(n)=(n + 6)*(n^2 + 6*n + 38)/15 - 1/5*( 1 - 2/5*5^(1/2)*cos(2*n*Pi/5) + 2/5*2^(1/2)*(5 - 5^(1/2))^(1/2)*sin(2*n*Pi/5) + 2/5*5^(1/2)*cos(4*n*Pi/5) - 2/5*2^(1/2)*(5 + 5^(1/2))^(1/2)*sin(4*n*Pi/5)) [From Richard Choulet, Dec 14 2008]
G.f. x^6*( 15-24*x+10*x^2+3*x^3-2*x^4-14*x^5+25*x^6-11*x^7 ) / ( (x^4+x^3+x^2+x+1)*(x-1)^4 ). - R. J. Mathar, Jun 22 2013