A026055 a(n) = (d(n)-r(n))/2, where d = A026054 and r is the periodic sequence with fundamental period (1,0,0,0).
6, 14, 25, 40, 59, 84, 114, 150, 192, 242, 299, 364, 437, 520, 612, 714, 826, 950, 1085, 1232, 1391, 1564, 1750, 1950, 2164, 2394, 2639, 2900, 3177, 3472, 3784, 4114, 4462, 4830, 5217, 5624, 6051, 6500, 6970, 7462, 7976, 8514, 9075, 9660, 10269, 10904, 11564, 12250, 12962, 13702, 14469, 15264
Offset: 3
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,1,-3,3,-1).
Programs
-
Mathematica
LinearRecurrence[{3,-3,1,1,-3,3,-1},{6,14,25,40,59,84,114},60] (* Harvey P. Dale, Mar 27 2013 *)
Formula
a(n) = - 0.125 - 0.125*( - 1)^n - 0.25*cos(n*Pi/2) + (n + 2)*(n + 3)*(n + 13)/12 [From Richard Choulet, Dec 13 2008]
a(n) = (n + 2)*(n + 3)*(n + 13)/12 - 0.125 - 0.125*( - 1)^n - 0.25*cos(n*Pi/2) [From Richard Choulet, Dec 13 2008]
G.f.: x^3*( 6-4*x+x^2+x^3+6*x^5-2*x^6-6*x^4 ) / ( (1+x)*(x^2+1)*(x-1)^4 ). - R. J. Mathar, Jun 22 2013