A026062 a(n) = (d(n)-r(n))/5, where d = A026060 and r is the periodic sequence with fundamental period (0,0,1,4,0).
9, 16, 25, 36, 51, 68, 88, 111, 137, 168, 202, 240, 282, 328, 380, 436, 497, 563, 634, 712, 795, 884, 979, 1080, 1189, 1304, 1426, 1555, 1691, 1836, 1988, 2148, 2316, 2492, 2678, 2872, 3075, 3287, 3508, 3740, 3981, 4232, 4493, 4764, 5047, 5340, 5644, 5959, 6285, 6624, 6974, 7336, 7710, 8096
Offset: 5
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
Crossrefs
Cf. A152894.
Formula
a(n)=(n + 5)*(n^2 + 25*n + 54)/30 - 1/5*(1 + ( - 1/2 - 1/2*5^(1/2))*cos(2*n*Pi/5) + ( - 3/10*2^(1/2)*(5 - 5^(1/2))^(1/2))*sin(2*n*Pi/5) + ( - 1/2 + 1/2*5^(1/2))*cos(4*n*Pi/5) + (3/10*2^(1/2)*(5 + 5^(1/2))^(1/2))*sin(4*n*Pi/5)) - Richard Choulet, Dec 14 2008
G.f. x^5*( 9-11*x+4*x^2+2*x^4-11*x^5+12*x^6-4*x^7 ) / ( (x^4+x^3+x^2+x+1)*(x-1)^4 ). - R. J. Mathar, Jun 23 2013