cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A026123 a(n) = number of (s(0),s(1),...,s(n)) such that every s(i) is a nonnegative integer, s(0) = 1, s(n) = 2, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also a(n) = T(n,n-1), where T is the array in A026120; a(n) = U(n,n+1), where U is the array in A026148.

Original entry on oeis.org

1, 4, 10, 28, 76, 209, 575, 1589, 4405, 12253, 34189, 95679, 268503, 755457, 2130717, 6023235, 17063139, 48434514, 137741280, 392407134, 1119766942, 3200326627, 9160055809, 26254474379, 75348899051, 216515177336, 622887159274
Offset: 2

Views

Author

Keywords

Crossrefs

First differences of A026134.

Formula

G.f.: z^2(-1+(1-z)^2M^3), with M the g.f. of the Motzkin numbers (A001006).
D-finite with recurrence: (n+5)*a(n) +5*(-n-3)*a(n-1) +(5*n+1)*a(n-2) +(5*n+3)*a(n-3) +6*(-n+3)*a(n-4)=0. - R. J. Mathar, Jun 23 2013

A026163 Sum{T(k,k-1)}, k = 1,2,...,n, where T is the array in A026148.

Original entry on oeis.org

1, 2, 6, 16, 45, 126, 356, 1008, 2862, 8140, 23188, 66144, 188916, 540216, 1546560, 4432512, 12717513, 36526626, 105016686, 302228080, 870613689, 2510249302, 7244285436, 20924179920, 60487084775, 174994990326, 506669921982
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026148.
Equals T(n, n-1), where T is the array in A026323.

Formula

Conjectures from Mark van Hoeij, Oct 30 2011: (Start)
a(n) = -4*(-3)^(1/2)*(-1)^n*((n^3+11*n^2+48*n+45)*hypergeom([1/2, n+2],[1],4/3)+(3*n^2+11*n+15)*hypergeom([1/2, n+3],[1],4/3))/((n+3)*(n+5)*(n+6)*(7+n))
G.f.: (2*x-1)*((x+1)^(1/2)*(1-3*x)^(1/2)*(x-1)*(x^2+2*x-1)+x^4-4*x^3-2*x^2+4*x-1)/(2*x^8). (End)
Conjecture: -(n+7)*(3*n-31)*a(n) +3*(-n^2-35*n-76)*a(n-1) +2*(32*n^2+27*n-459)*a(n-2) +(-47*n^2+286*n-204)*a(n-3) -3*(37*n-51)*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 23 2013

A026165 Number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 2, |s(1) - s(0)| = 1, |s(i) - s(i-1)| <= 1 for i >= 2. Also sum of numbers in row n+1 of the array T in A026148.

Original entry on oeis.org

1, 2, 6, 17, 49, 141, 407, 1177, 3411, 9904, 28808, 83931, 244895, 715534, 2093262, 6130767, 17974779, 52751358, 154950378, 455524203, 1340182539, 3945723033, 11624603235, 34268836707, 101081770181, 298320243976, 880875609552
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    CoefficientList[Series[E^x/x^2*((2*x^2-2*x)*BesselI[0, 2*x]+(2-x+2*x^2)*BesselI[1, 2*x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec after Vladeta Jovovic, Feb 01 2014 *)

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*binomial(k+1, floor(k/2)). - Vladeta Jovovic, Sep 18 2003
E.g.f.: exp(x)/x^2*((2*x^2-2*x)*BesselI(0, 2*x)+(2-x+2*x^2)*BesselI(1, 2*x)). - Vladeta Jovovic, Sep 23 2003
Conjecture: (n+3)*a(n) + (-5*n-9)*a(n-1) + (5*n+1)*a(n-2) + 5*(n-1)*a(n-3) + 6*(-n+3)*a(n-4) = 0. - R. J. Mathar, Jun 23 2013
Recurrence: (n+3)*(2*n^2 - n + 1)*a(n) = (4*n^3 + 10*n^2 + 7*n - 5)*a(n-1) + 3*(n-1)*(2*n^2 + 3*n + 2)*a(n-2). - Vaclav Kotesovec, Feb 01 2014
a(n) ~ 2 * 3^(n+1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 01 2014

A026151 a(n) = T(n,n), where T is the array in A026148.

Original entry on oeis.org

1, 1, 2, 4, 12, 32, 89, 246, 685, 1912, 5355, 15038, 42339, 119484, 337935, 957738, 2719539, 7736208, 22044444, 62916696, 179841270, 514793944, 1475586687, 4234989242, 12169352003, 35009302296, 100826681530, 290683486132, 838873595124
Offset: 0

Views

Author

Keywords

Crossrefs

First differences of A026325 for n > 1.

Extensions

a(0)-a(1) inserted and a(20) corrected by Sean A. Irvine, Sep 18 2019

A026152 a(n) = T(n,n-1), where T is the array in A026148.

Original entry on oeis.org

1, 4, 10, 29, 81, 230, 652, 1854, 5278, 15048, 42956, 122772, 351300, 1006344, 2885952, 8285001, 23809113, 68490060, 197211394, 568385609, 1639635613, 4734036134, 13679894484, 39562904855, 114507905551, 331674931656, 961408814434
Offset: 2

Views

Author

Keywords

Crossrefs

First differences of A026163.

Formula

Conjecture: -(n+7)*(31*n-87)*a(n) +(164*n^2+313*n-2115)*a(n-1) +(-182*n^2+229*n+891)*a(n-2) +(-164*n^2+59*n+519)*a(n-3) +3*(71*n-104)*(n-3)*a(n-4)=0. - R. J. Mathar, Jun 23 2013

A026153 T(n,n-2), where T is the array in A026148.

Original entry on oeis.org

1, 2, 7, 20, 60, 176, 517, 1512, 4415, 12870, 37477, 109044, 317109, 921870, 2679510, 7787904, 22636503, 65804638, 191332945, 556456060, 1618813834, 4710869108, 13713658368, 39935698400, 116340344575, 339050396646, 988474306017
Offset: 2

Views

Author

Keywords

Crossrefs

First differences of A026327.

Formula

Conjecture: -(n+8)*(n-118)*a(n) +(-n^2-561*n-2878)*a(n-1) +2*(38*n^2+203*n-1070)*a(n-2) +2*(-116*n^2+781*n+2493)*a(n-3) +(13*n^2-1012*n+3888)*a(n-4) +3*(107*n-423)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 23 2013

A026154 a(n) = T(n,n-3), where T is the array in A026148.

Original entry on oeis.org

1, 3, 11, 35, 111, 343, 1049, 3177, 9559, 28611, 85293, 253461, 751296, 2222442, 6563598, 19359022, 57038247, 167911721, 493972165, 1452419661, 4268753126, 12542145548, 36841741320, 108202146520, 317748977715, 933052724721, 2739805981773
Offset: 3

Views

Author

Keywords

Crossrefs

First differences of A026328.

Formula

Conjecture: (n+9)*a(n) +(-7*n-47)*a(n-1) +(13*n+51)*a(n-2) +(5*n+37)*a(n-3) +2*(-13*n-6)*a(n-4) +2*(n-13)*a(n-5) +12*(n-4)*a(n-6)=0. - R. J. Mathar, Jun 23 2013

A026155 T(n,n-4), where T is the array in A026148.

Original entry on oeis.org

1, 4, 16, 56, 189, 616, 1967, 6182, 19205, 59124, 180726, 549276, 1661646, 5007520, 15042722, 45068836, 134727499, 401991436, 1197519631, 3562523314, 10585937404, 31424706800, 93206486620, 276253350360, 818278951035, 2422518642516
Offset: 4

Views

Author

Keywords

Crossrefs

First differences of A026329.

Formula

Conjectures from Chai Wah Wu, Mar 23 2020: (Start)
a(n) = 12*a(n-1) - 53*a(n-2) + 90*a(n-3) + 26*a(n-4) - 256*a(n-5) + 160*a(n-6) + 224*a(n-7) - 203*a(n-8) - 84*a(n-9) + 77*a(n-10) + 14*a(n-11) - 7*a(n-12) for n > 15.
G.f.: x^4*(x - 1)^2*(x^6 - 6*x^5 - 13*x^4 + 8*x^3 + 8*x^2 - 6*x + 1)/((7*x^6 + 7*x^5 - 21*x^4 + 14*x^2 - 7*x + 1)*(x^6 - 3*x^5 - 5*x^4 + 8*x^3 + 4*x^2 - 5*x + 1)). (End)

A026156 a(n) = T(2n-1,n), where T is the array in A026148.

Original entry on oeis.org

1, 4, 20, 111, 616, 3464, 19656, 112370, 646272, 3735324, 21678696, 126256361, 737513400, 4319243760, 25352692620, 149108262264, 878502339712, 5184007871160, 30633757767144, 181253849830625, 1073680925191128, 6366778606697544, 37790436148353900, 224505805610383128
Offset: 1

Views

Author

Keywords

Extensions

Offset corrected and more terms from Sean A. Irvine, Sep 18 2019

A026157 a(n) = T(2n,n), where T is the array in A026148.

Original entry on oeis.org

1, 1, 7, 35, 189, 1038, 5796, 32734, 186494, 1069793, 6170554, 35752906, 207940493, 1213271620, 7098581115, 41631465591, 244669507994, 1440588095878, 8495970243502, 50179297862166, 296763850899633
Offset: 0

Views

Author

Keywords

Showing 1-10 of 24 results. Next