cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026269 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0 = s(n), s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n) and a(n) = Sum{T(k,k-1)}, k = 1,2,...,n, where T is array in A026268.

Original entry on oeis.org

1, 2, 4, 10, 25, 64, 166, 436, 1157, 3098, 8360, 22714, 62086, 170614, 471096, 1306374, 3636708, 10159590, 28473132, 80032638, 225562929, 637301652, 1804751718, 5121677512, 14563448593, 41487279622, 118389089432, 338381552294, 968627180975
Offset: 2

Views

Author

Keywords

Comments

Convolution of [1,2,3,6,13,..] (A005554) with [1,0,1,2,5,12...] (essentially A002026). - R. J. Mathar, Nov 01 2021

Crossrefs

First differences of A102071.

Programs

  • Mathematica
    Drop[CoefficientList[Series[4x^2(1-x^2)/(1-x+Sqrt[1-2x-3x^2])^2, {x,0,30}],x],2] (* Harvey P. Dale, May 05 2011 *)

Formula

G.f.: 4z^2(1-z^2)/[1-z+sqrt(1-2z-3z^2)]^2.
D-finite with recurrence (n+2)*a(n) +(-3*n-1)*a(n-1) +(-n+2)*a(n-2) +3*(n-5)*a(n-3)=0. - R. J. Mathar, Jun 10 2013
a(n) ~ 8 * 3^(n-3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
a(n) = A002026(n-1) - A002026(n-3). - R. J. Mathar, Nov 01 2021

Extensions

More terms from Ralf Stephan, Dec 30 2004