A026269 a(n) = number of (s(0), s(1), ..., s(n)) such that every s(i) is a nonnegative integer, s(0) = 0 = s(n), s(1) = 1, |s(i) - s(i-1)| <= 1 for i >= 2, |s(2) - s(1)| = 1, |s(3) - s(2)| = 1 if s(2) = 1. Also a(n) = T(n,n) and a(n) = Sum{T(k,k-1)}, k = 1,2,...,n, where T is array in A026268.
1, 2, 4, 10, 25, 64, 166, 436, 1157, 3098, 8360, 22714, 62086, 170614, 471096, 1306374, 3636708, 10159590, 28473132, 80032638, 225562929, 637301652, 1804751718, 5121677512, 14563448593, 41487279622, 118389089432, 338381552294, 968627180975
Offset: 2
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Gennady Eremin, Arithmetic on Balanced Parentheses: The case of Ordered Motzkin Words, arXiv:1911.01673 [math.CO], 2019. See (4.3) p. 13 (with a different offset).
Crossrefs
First differences of A102071.
Programs
-
Mathematica
Drop[CoefficientList[Series[4x^2(1-x^2)/(1-x+Sqrt[1-2x-3x^2])^2, {x,0,30}],x],2] (* Harvey P. Dale, May 05 2011 *)
Formula
G.f.: 4z^2(1-z^2)/[1-z+sqrt(1-2z-3z^2)]^2.
D-finite with recurrence (n+2)*a(n) +(-3*n-1)*a(n-1) +(-n+2)*a(n-2) +3*(n-5)*a(n-3)=0. - R. J. Mathar, Jun 10 2013
a(n) ~ 8 * 3^(n-3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 12 2014
Extensions
More terms from Ralf Stephan, Dec 30 2004
Comments