A026268 Triangle, T(n, k): T(n,k) = 1 for n < 3, T(3,1) = T(3,2) = T(3,3) = 2, T(n,0) = 1, T(n,1) = n-1, T(n,n) = T(n-1,n-2) + T(n-1,n-1), otherwise T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k), read by rows.
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 3, 5, 6, 4, 1, 4, 9, 14, 15, 10, 1, 5, 14, 27, 38, 39, 25, 1, 6, 20, 46, 79, 104, 102, 64, 1, 7, 27, 72, 145, 229, 285, 270, 166, 1, 8, 35, 106, 244, 446, 659, 784, 721, 436, 1, 9, 44, 149, 385, 796, 1349, 1889, 2164, 1941, 1157, 1, 10, 54, 202, 578, 1330, 2530, 4034, 5402, 5994, 5262, 3098
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 1, 1; 1, 2, 2, 2; 1, 3, 5, 6, 4; 1, 4, 9, 14, 15, 10; 1, 5, 14, 27, 38, 39, 25; 1, 6, 20, 46, 79, 104, 102, 64; 1, 7, 27, 72, 145, 229, 285, 270, 166; 1, 8, 35, 106, 244, 446, 659, 784, 721, 436; 1, 9, 44, 149, 385, 796, 1349, 1889, 2164, 1941, 1157;
Links
Crossrefs
Programs
-
Magma
f:= func< n | n eq 2 select 1 else (n^2 -n -2)/2 >; function T(n,k) // T = A026268 if k eq 0 or n lt 3 then return 1; elif k eq 1 then return n-1; elif k eq 2 then return f(n); elif k eq n then return T(n-1, n-2) + T(n-1, n-1); else return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..14]]; // G. C. Greubel, Sep 24 2022
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<3 || k==0, 1, If[k==1, n-1, If[k==2, (n^2-n-2)/2 + Boole[n==2], If[k==n, T[n-1, n-2] +T[n-1, n-1], T[n-1, k-2] + T[n-1, k-1] + T[n -1, k] ]]]]; Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* corrected by G. C. Greubel, Sep 24 2022 *)
-
SageMath
def T(n,k): # T = A026268 if n<3 or k==0: return 1 elif k==1: return n-1 elif k==2: return (n^2 -n -2)//2 + int(n==2) elif k==n: return T(n-1, n-2) + T(n-1, n-1) else: return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) flatten([[T(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 24 2022
Formula
From G. C. Greubel, Sep 24 2022: (Start)
T(n, 1) = A000027(n-1), n >= 1.
T(n, 2) = A212342(n-1), n >= 2.
T(n, n-1) = A026270(n), n >= 2.
T(n, n-2) = A026288(n), n >= 2.
T(n, n-3) = A026289(n), n >= 3.
T(n, n-4) = A026290(n), n >= 4.
T(n, n) = A026269(n), n >= 2.
T(n, floor(n/2)) = A026297(n), n >= 0.
T(2*n, n) = A026292(n).
T(2*n, n-1) = A026295(n), n >= 1.
T(2*n, n+1) = A026296(n), n >= 1.
T(2*n-1, n-1) = A026291(n), n >= 2.
T(3*n, n) = A026293(n), n >= 0.
T(4*n, n) = A026294(n), n >= 0.
Sum_{k=0..n} T(n, k) = A026299(n-1), n >= 3.(End)
Extensions
Updated by Clark Kimberling, Aug 29 2014
Indices of b-file corrected by Sidney Cadot, Jan 06 2023.
Comments