A026520 a(n) = T(n,n), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 0.
1, 1, 2, 4, 8, 20, 38, 104, 196, 556, 1052, 3032, 5774, 16778, 32146, 93872, 180772, 529684, 1024256, 3008864, 5837908, 17184188, 33433996, 98577712, 192239854, 567591142, 1109049320, 3278348608, 6416509142, 18986482250
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- Veronika Irvine, Stephen Melczer, and Frank Ruskey, Vertically constrained Motzkin-like paths inspired by bobbin lace, arXiv:1804.08725 [math.CO], 2018.
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *) Table[T[n, n], {n,0,40}] (* G. C. Greubel, Dec 19 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) [T(n,n) for n in (0..40)] # G. C. Greubel, Dec 19 2021