A026527 a(n) = T(2*n, n-2), where T is given by A026519.
1, 3, 14, 55, 231, 952, 3976, 16614, 69750, 293557, 1238952, 5240599, 22212645, 94318875, 401143304, 1708558480, 7286677479, 31113264579, 132994055090, 569048532612, 2437033824302, 10445705817063, 44807461337160, 192342179361800, 826205908069555, 3551172735996756, 15272395383833658
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *) a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n, n-2] ]; Table[a[n], {n,2,40}] (* G. C. Greubel, Dec 20 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) [T(2*n,n-2) for n in (2..40)] # G. C. Greubel, Dec 20 2021
Extensions
Terms a(20) onward added by G. C. Greubel, Dec 20 2021