cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A026544 Duplicate of A026527.

Original entry on oeis.org

1, 3, 14, 55, 231, 952, 3976, 16614, 69750, 293557, 1238952, 5240599
Offset: 2

Views

Author

Keywords

A026530 a(n) = T(n, floor(n/2)), T given by A026519.

Original entry on oeis.org

1, 1, 1, 2, 5, 8, 16, 28, 65, 111, 251, 436, 1016, 1763, 4117, 7176, 16913, 29521, 69865, 122182, 290455, 508595, 1212905, 2126312, 5085224, 8923136, 21389824, 37563930, 90226449, 158563368, 381519416, 670893296, 1616684241, 2844444761
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, T[n, Floor[n/2]] ];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(n, n//2) for n in (0..40)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = A026519(n, floor(n/2)).

A026536 Irregular triangular array T read by rows: T(i,0 ) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = floor(i/2) for i >= 1; for even n >= 2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) for j = 2..2i-2, for odd n >= 3, T(i,j) = T(i-1,j-2) + T(i-1,j) for j = 2..2i-2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 2, 5, 6, 8, 6, 5, 2, 1, 1, 2, 6, 8, 13, 12, 13, 8, 6, 2, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 3, 10, 19, 36, 49, 65, 66, 65, 49, 36, 19, 10, 3, 1, 1, 4, 14, 32, 65, 104, 150, 180, 196, 180
Offset: 0

Views

Author

Keywords

Comments

T(n, k) is the number of strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i) - s(i-1)| <= 1 if i is even, |s(i) - s(i-1)| = 1 if i is odd.

Examples

			First 5 rows:
  1
  1  0  1
  1  1  2  1  1
  1  1  3  2  3  1  1
  1  2  5  6  8  6  5  2  1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2];
    t[n_, k_] := Floor[n/2] /; k == 2 n - 1; t[n_, k_] := t[n, k] =
    If[EvenQ[n], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k], t[n - 1, k -
    2] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u]   (* A026536 array *)
    v = Flatten[u] (* A026536 sequence *)
  • SageMath
    @cached_function
    def T(n, k):
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) # Peter Luschny, Oct 13 2019

Extensions

Updated by Clark Kimberling, Aug 28 2014
Offset changed to 0 by Peter Luschny, Oct 10 2019

A026519 Irregular triangular array T read by rows: T(n, k) = T(n-1, k-2) + T(n-1, k) if (n mod 2) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), with T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor((n+1)/2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 4, 4, 2, 1, 1, 2, 5, 6, 8, 6, 5, 2, 1, 1, 3, 8, 13, 19, 20, 19, 13, 8, 3, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 4, 13, 28, 52, 76, 98, 104, 98, 76, 52, 28, 13, 4, 1, 1, 4, 14, 32, 65, 104, 150, 180, 196, 180, 150, 104, 65, 32, 14, 4, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i) - s(i-1)| = 1 if i is even, |s(i) - s(i-1)| <= 1 if i is odd.

Examples

			First 5 rows:
1
1 ... 1 ... 1
1 ... 1 ... 2 ... 1 ... 1
1 ... 2 ... 4 ... 4 ... 4 ... 2 ... 1
1 ... 2 ... 5 ... 6 ... 8 ... 6 ... 5 ... 2 ... 1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0]:= 1; t[n_, k_]:= 1/; k==2n; t[n_, 1]:= Floor[(n+1)/2]; t[n_, k_] := Floor[(n+1)/2] /; k==2n-1; t[n_, k_]:= t[n, k]= If[EvenQ[n], t[n-1, k-2] + t[n-1, k], t[n-1, k-2] + t[n-1, k-1] + t[n-1, k]];
    u = Table[t[n, k], {n, 0, z}, {k, 0, 2n}];
    TableForm[u]  (* A026519 array *)
    Flatten[u] (* A026519 sequence *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Dec 19 2021

Formula

T(n, k) = T(n-1, k-2) + T(n-1, k) if (n mod 2) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), with T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor((n+1)/2).

Extensions

Updated by Clark Kimberling, Aug 29 2014
Offset changed to 0 by G. C. Greubel, Dec 19 2021

A026520 a(n) = T(n,n), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 0.

Original entry on oeis.org

1, 1, 2, 4, 8, 20, 38, 104, 196, 556, 1052, 3032, 5774, 16778, 32146, 93872, 180772, 529684, 1024256, 3008864, 5837908, 17184188, 33433996, 98577712, 192239854, 567591142, 1109049320, 3278348608, 6416509142, 18986482250
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *)
    Table[T[n, n], {n,0,40}] (* G. C. Greubel, Dec 19 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(n,n) for n in (0..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = A026519(n, n).
For n>1, a(n) = 2*A026554(n-1).

A026534 a(n) = Sum_{i=0..2*n} Sum_{j=0..n-1} A026519(j, i).

Original entry on oeis.org

1, 4, 10, 28, 64, 172, 388, 1036, 2332, 6220, 13996, 37324, 83980, 223948, 503884, 1343692, 3023308, 8062156, 18139852, 48372940, 108839116, 290237644, 653034700, 1741425868, 3918208204, 10448555212, 23509249228, 62691331276
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else Self(n-1) +6*Self(n-2) -6*Self(n-3): n in [1..40]]; // G. C. Greubel, Dec 20 2021
    
  • Mathematica
    LinearRecurrence[{1,6,-6}, {1,4,10}, 40] (* G. C. Greubel, Dec 20 2021 *)
  • PARI
    Vec((1+3*x)/((1-x)*(1-6*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jan 24 2022
  • Sage
    @CachedFunction
    def T(n, k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( sum( T(j,i) for i in (0..2*n) ) for j in (0..n-1) )
    [a(n) for n in (1..40)]
    

Formula

a(n) = Sum_{i=0..2*n} Sum_{j=0..n-1} A026519(j, i).
G.f.: x*(1+3*x)/((1-x)*(1-6*x^2)). - Ralf Stephan, Feb 03 2004
a(n) = (1/60)*( 6^((n+1)/2)*( (4*sqrt(6) - 9)*(-1)^n + (4*sqrt(6) + 9) ) - 48 ). - G. C. Greubel, Dec 20 2021

A026521 a(n) = T(n, n-1), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 1.

Original entry on oeis.org

1, 1, 4, 6, 19, 33, 98, 180, 526, 990, 2887, 5502, 16073, 30863, 90386, 174456, 512128, 992304, 2918954, 5673140, 16716998, 32571858, 96119927, 187675644, 554524660, 1084649644, 3208254571, 6284986554, 18607536319, 36501029265
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *)
    Table[T[n, n-1], {n,40}] (* G. C. Greubel, Dec 19 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(n,n-1) for n in (1..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = A026519(n, n-1).
a(n) = A026537(n+1)/2.

A026522 a(n) = T(n, n-2), where T is given by A026519. Also number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 2.

Original entry on oeis.org

1, 2, 5, 13, 27, 76, 150, 434, 845, 2470, 4797, 14085, 27377, 80584, 156900, 462620, 902394, 2664276, 5205950, 15387670, 30114073, 89097932, 174609162, 517058502, 1014555607, 3006637946, 5906040623, 17514547015, 34438443075
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *)
    Table[T[n, n-2], {n,2,40}] (* G. C. Greubel, Dec 19 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(n,n-2) for n in (2..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = A026519(n, n-2).

A026523 a(n) = T(n, n-3), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 3.

Original entry on oeis.org

1, 2, 8, 16, 52, 104, 319, 635, 1910, 3786, 11304, 22344, 66514, 131264, 390266, 769578, 2286996, 4508580, 13397075, 26412001, 78489235, 154773696, 460030947, 907432695, 2697786052, 5323519838, 15830906756, 31251588060
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *)
    Table[T[n, n-3], {n,3,40}] (* G. C. Greubel, Dec 19 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(n,n-3) for n in (3..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = A026519(n, n-3).

A026524 a(n) = T(n, n-4), T given by A026519. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 4.

Original entry on oeis.org

1, 3, 9, 28, 65, 201, 430, 1316, 2721, 8259, 16793, 50680, 102102, 306958, 615024, 1844304, 3682545, 11024331, 21963161, 65675764, 130648089, 390374193, 775797750, 2316881892, 4601346295, 13737041045, 27270124455
Offset: 4

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k]]]]; (* T = A026519 *)
    Table[T[n, n-4], {n,4,40}] (* G. C. Greubel, Dec 19 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026552
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(n,n-4) for n in (4..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = A026519(n, n-4).
Showing 1-10 of 22 results. Next