A026530 a(n) = T(n, floor(n/2)), T given by A026519.
1, 1, 1, 2, 5, 8, 16, 28, 65, 111, 251, 436, 1016, 1763, 4117, 7176, 16913, 29521, 69865, 122182, 290455, 508595, 1212905, 2126312, 5085224, 8923136, 21389824, 37563930, 90226449, 158563368, 381519416, 670893296, 1616684241, 2844444761
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *) a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, T[n, Floor[n/2]] ]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 21 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026519 if (k<0 or k>2*n): return 0 elif (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) [T(n, n//2) for n in (0..40)] # G. C. Greubel, Dec 21 2021
Formula
a(n) = A026519(n, floor(n/2)).
Comments