cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A027267 a(n) = self-convolution of row n of array T given by A026536.

Original entry on oeis.org

1, 2, 8, 26, 196, 692, 5774, 21142, 180772, 675344, 5837908, 22087716, 192239854, 733698032, 6416509142, 24645099530, 216309089956, 834847581048, 7347943049432, 28467646552432, 251119894730596, 975892708569952, 8624336421678788, 33600628889991916, 297394187356638766
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026536.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[Sum[T[n,k]*T[n,2*n-k], {k,0,2*n}], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A027267(n): return sum(T(n,k)*T(n,2*n-k) for k in (0..2*n))
    [A027267(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022

Formula

a(n) = Sum_{k=0..2*n} A026536(n, k)*A026536(n, 2*n-k). - G. C. Greubel, Apr 12 2022

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A026550 a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A026536.

Original entry on oeis.org

1, 2, 6, 13, 35, 77, 204, 453, 1199, 2675, 7089, 15855, 42070, 94228, 250269, 561068, 1491262, 3345334, 8896310, 19966310, 53118352, 119257668, 317373194, 712742108, 1897253203, 4261711183, 11346582851, 25491926511, 67882263130
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026548.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    A026550[n_]:= A026550[n]= Sum[T[j, k], {j,0,n}, {k,0,j}];
    Table[A026550[n], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026550(n): return sum(sum(T(j,k) for k in (0..j)) for j in (0..n))
    [A026550(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022

Formula

a(n) = Sum_{j=0..n} Sum_{k=0..j} A026548(j, k).

A027268 a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026536.

Original entry on oeis.org

0, 6, 20, 180, 644, 5502, 20292, 174456, 654632, 5673140, 21528000, 187675644, 717800628, 6284986554, 24178479500, 212408191568, 820811282352, 7229648901024, 28037230854096, 247468885359240, 962488105227160, 8510025522045036, 33177800527098040, 293772371437293720
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[Sum[T[n, k]*T[n,k+1], {k,0,2*n-1}], {n,40}] (* G. C. Greubel, Apr 12 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A027268(n): return sum(T(n,k)*T(n,k+1) for k in (0..2*n-1))
    [A027268(n) for n in (1..40)] # G. C. Greubel, Apr 12 2022

Formula

a(n) = Sum_{k=0..2n-1} A026536(n,k) * A026536(n,k+1)

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027269 a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026536.

Original entry on oeis.org

1, 5, 19, 150, 561, 4797, 18089, 156900, 596674, 5205950, 19932353, 174609162, 672106267, 5906040623, 22829936683, 201114700568, 780077588440, 6885880226784, 26784015828458, 236826459554380, 923352937530146, 8175978023317170, 31940549289135429, 283166067626865540
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[Sum[T[n,k]*T[n,k+2], {k,0,2*n-2}], {n,40}] (* G. C. Greubel, Apr 12 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A027269(n): return sum(T(n,k)*T(n,k+2) for k in (0..2*n-2))
    [A027269(n) for n in (1..40)] # G. C. Greubel, Apr 12 2022

Formula

a(n) = Sum_{k=0..2n-2} A026536(n,k) * A026536(n,k+2).

Extensions

More terms from Sean A. Irvine, Oct 26 2019
a(1) = 1 prepended by G. C. Greubel, Apr 12 2022

A026537 a(n) = T(n,n), T given by A026536. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n)=0.

Original entry on oeis.org

1, 0, 2, 2, 8, 12, 38, 66, 196, 360, 1052, 1980, 5774, 11004, 32146, 61726, 180772, 348912, 1024256, 1984608, 5837908, 11346280, 33433996, 65143716, 192239854, 375351288, 1109049320, 2169299288, 6416509142, 12569973108
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n, n], {n, 0, 35}] (* G. C. Greubel, Apr 10 2022 *)
  • SageMath
    @cached_function
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026537(n): return T(n,n)
    [A026537(n) for n in (0..35)] # G. C. Greubel, Apr 10 2022

Formula

a(n) = A026536(n, n).
a(n) = 2 * A026521(n-1).

A026548 a(n) = T(n,0) + T(n,1) + ... + T(n,n), T given by A026536.

Original entry on oeis.org

1, 1, 4, 7, 22, 42, 127, 249, 746, 1476, 4414, 8766, 26215, 52158, 156041, 310799, 930194, 1854072, 5550976, 11070000, 33152042, 66139316, 198115526, 395368914, 1184511095, 2364457980, 7084871668, 14145343660, 42390336619
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1,  Floor[n/2],
    If[EvenQ[n], T[n-1,k-2] +T[n-1,k-1] +T[n-1,k], T[n-1, k-2] +T[n-1,k]]]];
    Table[Sum[T[n, k], {k,0,n}], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026548(n): return sum(T(n,k) for k in (0..n))
    [A026548(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022

Formula

a(n) = Sum_{k=0..n} A026536(n, k).

Extensions

Missing a(0)=1 inserted by Sean A. Irvine, Oct 06 2019

A027270 a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026536.

Original entry on oeis.org

2, 10, 104, 420, 3786, 14826, 131264, 510576, 4508580, 17523506, 154773696, 602175444, 5323519838, 20744201142, 183586707648, 716553432640, 6348284151024, 24816637181076, 220081449149440, 861581808936200, 7647723960962932, 29978812970646870, 266322435212031984
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    Table[Sum[T[n,k]*T[n,k+3], {k,0,2*n-3}], {n,2,40}] (* G. C. Greubel, Apr 12 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A027270(n): return sum(T(n,k)*T(n,k+3) for k in (0..2*n-3))
    [A027270(n) for n in (2..40)] # G. C. Greubel, Apr 12 2022

Formula

a(n) = Sum_{k=0..2n-3} A026536(n,k) * A026536(n,k+3).

Extensions

More terms from Sean A. Irvine, Oct 26 2019
a(2) = 2 prepended by G. C. Greubel, Apr 12 2022

A027271 a(n) = Sum_{k=0..2n} (k+1)*T(n,k), where T is given by A026536.

Original entry on oeis.org

1, 4, 18, 48, 180, 432, 1512, 3456, 11664, 25920, 85536, 186624, 606528, 1306368, 4199040, 8957952, 28553472, 60466176, 191476224, 403107840, 1269789696, 2660511744, 8344332288, 17414258688, 54419558400, 113192681472, 352638738432, 731398864896, 2272560758784
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026536, A053469, A199299 (bisection).

Programs

  • Magma
    [Round(6^(n/2)*( 3*((n+1) mod 2) + Sqrt(6)*(n mod 2) )*(n+1)/3): n in [0..40]]; // G. C. Greubel, Apr 12 2022
    
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    A027271[n_]:= A027271[n]= Sum[(k+1)*T[n,k], {k,0,2*n}];
    Table[A027271[n], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
  • PARI
    A027271(n)=my(b(n)=if(!bittest(n,0),n\2*6^(n\2-1)));4*b(n+1)+b(n+2)+6*b(n) \\ could be made more efficient and explicit by simplifying the formula for n even and for n odd separately. - M. F. Hasler, Sep 29 2012
    
  • SageMath
    [6^(n/2)*( 3*((n+1)%2) + sqrt(6)*(n%2) )*(n+1)/3 for n in (0..40)] # G. C. Greubel, Apr 12 2022

Formula

From Paul Barry, Mar 03 2004: (Start)
G.f.: (1+4*x+6*x^2)/(1-6*x^2)^2 = (d/dx)((1+3*x)/(1-6*x^2)).
a(n) = 6^(n/2)*((3-sqrt(6))*(-1)^n + (3+sqrt(6)))*(n+1)/6. (End)
a(n) = 4*b(n) + b(n+1) + 6*b(n-1) with b(n)= 0, 1, 0, 12, 0, 108, 0, 864, ... (aerated A053469). - R. J. Mathar, Sep 29 2012
E.g.f.: (1 + 2*x)*cosh(sqrt(6)*x) + sqrt(2/3)*(1 + 3*x)*sinh(sqrt(6)*x). - Stefano Spezia, May 07 2023

A026538 a(n) = T(n,n-1), T given by A026536. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 1.

Original entry on oeis.org

1, 1, 3, 6, 13, 33, 65, 180, 346, 990, 1897, 5502, 10571, 30863, 59523, 174456, 337672, 992304, 1926650, 5673140, 11043858, 32571858, 63548069, 187675644, 366849016, 1084649644, 2123604927, 6284986554, 12322549765, 36501029265
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026536.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n, n-1], {n, 35}] (* G. C. Greubel, Apr 10 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026538(n): return T(n,n-1)
    [A026538(n) for n in (1..35)] # G. C. Greubel, Apr 10 2022

Formula

a(n) = A026536(n, n-1).

A026539 a(n) = T(n,n-2), T given by A026536. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 2.

Original entry on oeis.org

1, 1, 5, 8, 27, 49, 150, 284, 845, 1625, 4797, 9288, 27377, 53207, 156900, 305720, 902394, 1761882, 5205950, 10181720, 30114073, 58983859, 174609162, 342449340, 1014555607, 1992082339, 5906040623, 11608506392, 34438443075
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A026536.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n,n-2], {n,2,35}] (* G. C. Greubel, Apr 10 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026539(n): return T(n,n-2)
    [A026539(n) for n in (2..35)] # G. C. Greubel, Apr 10 2022

Formula

a(n) = A026536(n, n-2).
Showing 1-10 of 26 results. Next