A027267
a(n) = self-convolution of row n of array T given by A026536.
Original entry on oeis.org
1, 2, 8, 26, 196, 692, 5774, 21142, 180772, 675344, 5837908, 22087716, 192239854, 733698032, 6416509142, 24645099530, 216309089956, 834847581048, 7347943049432, 28467646552432, 251119894730596, 975892708569952, 8624336421678788, 33600628889991916, 297394187356638766
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
Table[Sum[T[n,k]*T[n,2*n-k], {k,0,2*n}], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
-
@CachedFunction
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A027267(n): return sum(T(n,k)*T(n,2*n-k) for k in (0..2*n))
[A027267(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022
A026550
a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A026536.
Original entry on oeis.org
1, 2, 6, 13, 35, 77, 204, 453, 1199, 2675, 7089, 15855, 42070, 94228, 250269, 561068, 1491262, 3345334, 8896310, 19966310, 53118352, 119257668, 317373194, 712742108, 1897253203, 4261711183, 11346582851, 25491926511, 67882263130
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
A026550[n_]:= A026550[n]= Sum[T[j, k], {j,0,n}, {k,0,j}];
Table[A026550[n], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
-
@CachedFunction
def T(n, k): # A026536
if k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A026550(n): return sum(sum(T(j,k) for k in (0..j)) for j in (0..n))
[A026550(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022
A027268
a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026536.
Original entry on oeis.org
0, 6, 20, 180, 644, 5502, 20292, 174456, 654632, 5673140, 21528000, 187675644, 717800628, 6284986554, 24178479500, 212408191568, 820811282352, 7229648901024, 28037230854096, 247468885359240, 962488105227160, 8510025522045036, 33177800527098040, 293772371437293720
Offset: 1
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
Table[Sum[T[n, k]*T[n,k+1], {k,0,2*n-1}], {n,40}] (* G. C. Greubel, Apr 12 2022 *)
-
@CachedFunction
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A027268(n): return sum(T(n,k)*T(n,k+1) for k in (0..2*n-1))
[A027268(n) for n in (1..40)] # G. C. Greubel, Apr 12 2022
A027269
a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026536.
Original entry on oeis.org
1, 5, 19, 150, 561, 4797, 18089, 156900, 596674, 5205950, 19932353, 174609162, 672106267, 5906040623, 22829936683, 201114700568, 780077588440, 6885880226784, 26784015828458, 236826459554380, 923352937530146, 8175978023317170, 31940549289135429, 283166067626865540
Offset: 1
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
Table[Sum[T[n,k]*T[n,k+2], {k,0,2*n-2}], {n,40}] (* G. C. Greubel, Apr 12 2022 *)
-
@CachedFunction
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A027269(n): return sum(T(n,k)*T(n,k+2) for k in (0..2*n-2))
[A027269(n) for n in (1..40)] # G. C. Greubel, Apr 12 2022
A026537
a(n) = T(n,n), T given by A026536. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n)=0.
Original entry on oeis.org
1, 0, 2, 2, 8, 12, 38, 66, 196, 360, 1052, 1980, 5774, 11004, 32146, 61726, 180772, 348912, 1024256, 1984608, 5837908, 11346280, 33433996, 65143716, 192239854, 375351288, 1109049320, 2169299288, 6416509142, 12569973108
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n, n], {n, 0, 35}] (* G. C. Greubel, Apr 10 2022 *)
-
@cached_function
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A026537(n): return T(n,n)
[A026537(n) for n in (0..35)] # G. C. Greubel, Apr 10 2022
A026548
a(n) = T(n,0) + T(n,1) + ... + T(n,n), T given by A026536.
Original entry on oeis.org
1, 1, 4, 7, 22, 42, 127, 249, 746, 1476, 4414, 8766, 26215, 52158, 156041, 310799, 930194, 1854072, 5550976, 11070000, 33152042, 66139316, 198115526, 395368914, 1184511095, 2364457980, 7084871668, 14145343660, 42390336619
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2],
If[EvenQ[n], T[n-1,k-2] +T[n-1,k-1] +T[n-1,k], T[n-1, k-2] +T[n-1,k]]]];
Table[Sum[T[n, k], {k,0,n}], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
-
@CachedFunction
def T(n, k): # A026536
if k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A026548(n): return sum(T(n,k) for k in (0..n))
[A026548(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022
A027270
a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026536.
Original entry on oeis.org
2, 10, 104, 420, 3786, 14826, 131264, 510576, 4508580, 17523506, 154773696, 602175444, 5323519838, 20744201142, 183586707648, 716553432640, 6348284151024, 24816637181076, 220081449149440, 861581808936200, 7647723960962932, 29978812970646870, 266322435212031984
Offset: 2
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
Table[Sum[T[n,k]*T[n,k+3], {k,0,2*n-3}], {n,2,40}] (* G. C. Greubel, Apr 12 2022 *)
-
@CachedFunction
def T(n, k): # A026536
if k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A027270(n): return sum(T(n,k)*T(n,k+3) for k in (0..2*n-3))
[A027270(n) for n in (2..40)] # G. C. Greubel, Apr 12 2022
A027271
a(n) = Sum_{k=0..2n} (k+1)*T(n,k), where T is given by A026536.
Original entry on oeis.org
1, 4, 18, 48, 180, 432, 1512, 3456, 11664, 25920, 85536, 186624, 606528, 1306368, 4199040, 8957952, 28553472, 60466176, 191476224, 403107840, 1269789696, 2660511744, 8344332288, 17414258688, 54419558400, 113192681472, 352638738432, 731398864896, 2272560758784
Offset: 0
-
[Round(6^(n/2)*( 3*((n+1) mod 2) + Sqrt(6)*(n mod 2) )*(n+1)/3): n in [0..40]]; // G. C. Greubel, Apr 12 2022
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
A027271[n_]:= A027271[n]= Sum[(k+1)*T[n,k], {k,0,2*n}];
Table[A027271[n], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
-
A027271(n)=my(b(n)=if(!bittest(n,0),n\2*6^(n\2-1)));4*b(n+1)+b(n+2)+6*b(n) \\ could be made more efficient and explicit by simplifying the formula for n even and for n odd separately. - M. F. Hasler, Sep 29 2012
-
[6^(n/2)*( 3*((n+1)%2) + sqrt(6)*(n%2) )*(n+1)/3 for n in (0..40)] # G. C. Greubel, Apr 12 2022
A026538
a(n) = T(n,n-1), T given by A026536. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 1.
Original entry on oeis.org
1, 1, 3, 6, 13, 33, 65, 180, 346, 990, 1897, 5502, 10571, 30863, 59523, 174456, 337672, 992304, 1926650, 5673140, 11043858, 32571858, 63548069, 187675644, 366849016, 1084649644, 2123604927, 6284986554, 12322549765, 36501029265
Offset: 1
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n, n-1], {n, 35}] (* G. C. Greubel, Apr 10 2022 *)
-
@CachedFunction
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A026538(n): return T(n,n-1)
[A026538(n) for n in (1..35)] # G. C. Greubel, Apr 10 2022
A026539
a(n) = T(n,n-2), T given by A026536. Also a(n) = number of integer strings s(0), ..., s(n), counted by T, such that s(n) = 2.
Original entry on oeis.org
1, 1, 5, 8, 27, 49, 150, 284, 845, 1625, 4797, 9288, 27377, 53207, 156900, 305720, 902394, 1761882, 5205950, 10181720, 30114073, 58983859, 174609162, 342449340, 1014555607, 1992082339, 5906040623, 11608506392, 34438443075
Offset: 2
-
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k], T[n-1, k-2] + T[n-1, k]] ]]; Table[T[n,n-2], {n,2,35}] (* G. C. Greubel, Apr 10 2022 *)
-
@CachedFunction
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A026539(n): return T(n,n-2)
[A026539(n) for n in (2..35)] # G. C. Greubel, Apr 10 2022
Showing 1-10 of 26 results.