cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A026536 Irregular triangular array T read by rows: T(i,0 ) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = floor(i/2) for i >= 1; for even n >= 2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) for j = 2..2i-2, for odd n >= 3, T(i,j) = T(i-1,j-2) + T(i-1,j) for j = 2..2i-2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 2, 5, 6, 8, 6, 5, 2, 1, 1, 2, 6, 8, 13, 12, 13, 8, 6, 2, 1, 1, 3, 9, 16, 27, 33, 38, 33, 27, 16, 9, 3, 1, 1, 3, 10, 19, 36, 49, 65, 66, 65, 49, 36, 19, 10, 3, 1, 1, 4, 14, 32, 65, 104, 150, 180, 196, 180
Offset: 0

Views

Author

Keywords

Comments

T(n, k) is the number of strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i) - s(i-1)| <= 1 if i is even, |s(i) - s(i-1)| = 1 if i is odd.

Examples

			First 5 rows:
  1
  1  0  1
  1  1  2  1  1
  1  1  3  2  3  1  1
  1  2  5  6  8  6  5  2  1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2];
    t[n_, k_] := Floor[n/2] /; k == 2 n - 1; t[n_, k_] := t[n, k] =
    If[EvenQ[n], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k], t[n - 1, k -
    2] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u]   (* A026536 array *)
    v = Flatten[u] (* A026536 sequence *)
  • SageMath
    @cached_function
    def T(n, k):
        if k < 0 or n < 0: return 0
        elif k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) # Peter Luschny, Oct 13 2019

Extensions

Updated by Clark Kimberling, Aug 28 2014
Offset changed to 0 by Peter Luschny, Oct 10 2019

A026548 a(n) = T(n,0) + T(n,1) + ... + T(n,n), T given by A026536.

Original entry on oeis.org

1, 1, 4, 7, 22, 42, 127, 249, 746, 1476, 4414, 8766, 26215, 52158, 156041, 310799, 930194, 1854072, 5550976, 11070000, 33152042, 66139316, 198115526, 395368914, 1184511095, 2364457980, 7084871668, 14145343660, 42390336619
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1,  Floor[n/2],
    If[EvenQ[n], T[n-1,k-2] +T[n-1,k-1] +T[n-1,k], T[n-1, k-2] +T[n-1,k]]]];
    Table[Sum[T[n, k], {k,0,n}], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A026548(n): return sum(T(n,k) for k in (0..n))
    [A026548(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022

Formula

a(n) = Sum_{k=0..n} A026536(n, k).

Extensions

Missing a(0)=1 inserted by Sean A. Irvine, Oct 06 2019

A352972 a(n) = Sum_{j=0..2*n} Sum_{k=0..j} A026536(j, k).

Original entry on oeis.org

1, 6, 35, 204, 1199, 7089, 42070, 250269, 1491262, 8896310, 53118352, 317373194, 1897253203, 11346582851, 67882263130, 406231442387, 2431626954934, 14558306758418, 87177151134954, 522110098886882, 3127380060424476, 18734897945679836, 112245303177542790, 672552484035697364, 4030148584900522009
Offset: 0

Views

Author

G. C. Greubel, Apr 12 2022

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
    A352972[n_]:= A352972[n]= Sum[T[j,k], {j,0,2*n}, {k,0,j}];
    Table[A352972[n], {n,0,40}]
  • SageMath
    @CachedFunction
    def T(n, k): # A026536
        if k == 0 or k == 2*n: return 1
        elif k == 1 or k == 2*n-1: return n//2
        elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
        return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    def A352972(n): return sum(sum(T(j,k) for k in (0..j)) for j in (0..2*n))
    [A352972(n) for n in (3..40)]

Formula

a(n) = Sum_{j=0..2*n} Sum_{k=0..j} A026536(j, k).
Showing 1-3 of 3 results.