cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026529 a(n) = T(2*n-1, n-2), where T is given by A026519.

Original entry on oeis.org

1, 3, 13, 50, 205, 833, 3437, 14232, 59301, 248050, 1041469, 4385888, 18519306, 78376403, 332370925, 1412000824, 6008104249, 25601113893, 109229104313, 466577280830, 1995120743749, 8539562784258, 36583756253885, 156854365793800, 673028595199000, 2889847430222961, 12416501973954798, 53381063233213198
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n-1, n-2] ];
    Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 20 2021 *)
  • Maxima
    a(n):=sum(binomial(n-1,i-1)*sum(binomial(j,n-j+2*i)*binomial(n,j),j,0,n),i,1,n/2); /* Vladimir Kruchinin, Jan 16 2015 */
    
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(2*n-1,n-2) for n in (2..40)] # G. C. Greubel, Dec 20 2021

Formula

a(n) = A026519(2*n-1, n-2).
a(n) = A026552(2*n-1, n-2).
a(n) = Sum_{i=0..floor(n/2)} C(n-1, i-1)*Sum_{j=0..n} C(j, n-j+2*i)*C(n, j). - Vladimir Kruchinin, Jan 16 2015

Extensions

Terms a(20) onward added by G. C. Greubel, Dec 20 2021