A026529 a(n) = T(2*n-1, n-2), where T is given by A026519.
1, 3, 13, 50, 205, 833, 3437, 14232, 59301, 248050, 1041469, 4385888, 18519306, 78376403, 332370925, 1412000824, 6008104249, 25601113893, 109229104313, 466577280830, 1995120743749, 8539562784258, 36583756253885, 156854365793800, 673028595199000, 2889847430222961, 12416501973954798, 53381063233213198
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *) a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n-1, n-2] ]; Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 20 2021 *)
-
Maxima
a(n):=sum(binomial(n-1,i-1)*sum(binomial(j,n-j+2*i)*binomial(n,j),j,0,n),i,1,n/2); /* Vladimir Kruchinin, Jan 16 2015 */
-
Sage
@CachedFunction def T(n,k): # T = A026519 if (k<0 or k>2*n): return 0 elif (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+1)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) [T(2*n-1,n-2) for n in (2..40)] # G. C. Greubel, Dec 20 2021
Formula
a(n) = A026519(2*n-1, n-2).
a(n) = A026552(2*n-1, n-2).
a(n) = Sum_{i=0..floor(n/2)} C(n-1, i-1)*Sum_{j=0..n} C(j, n-j+2*i)*C(n, j). - Vladimir Kruchinin, Jan 16 2015
Extensions
Terms a(20) onward added by G. C. Greubel, Dec 20 2021