A026542 Expansion of 1/((1-2*x)*(1-6*x)*(1-7*x)*(1-11*x)).
1, 26, 443, 6292, 81081, 986622, 11585911, 132996344, 1504338341, 16852487938, 187601429379, 2079728352156, 22993065448081, 253755685986374, 2797253854490447, 30812086837337728, 339233247941143101, 3733693166454672330, 41085669244650954715
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..950
- Index entries for linear recurrences with constant coefficients, signature (26,-233,832,-924).
Programs
-
Magma
[(1/180)*(11^(n+3) -9*7^(n+3) +9*6^(n+3) -2^(n+3)): n in [0..30]]; // G. C. Greubel, Apr 09 2022
-
Mathematica
CoefficientList[Series[1/((1-2x)(1-6x)(1-7x)(1-11x)),{x,0,30}],x] (* Harvey P. Dale, May 27 2019 *)
-
SageMath
[(1/180)*(11^(n+3) -9*7^(n+3) +9*6^(n+3) -2^(n+3)) for n in (0..30)] # G. C. Greubel, Apr 09 2022
Formula
a(n) = (1/180)*(11^(n+3) -9*7^(n+3) +9*6^(n+3) -2^(n+3)). - R. J. Mathar, Jun 23 2013
E.g.f.: (1/180)*(-8*exp(2*x) + 1944*exp(6*x) - 3087*exp(7*x) + 1331*exp(11*x)). - G. C. Greubel, Apr 09 2022