A026548 a(n) = T(n,0) + T(n,1) + ... + T(n,n), T given by A026536.
1, 1, 4, 7, 22, 42, 127, 249, 746, 1476, 4414, 8766, 26215, 52158, 156041, 310799, 930194, 1854072, 5550976, 11070000, 33152042, 66139316, 198115526, 395368914, 1184511095, 2364457980, 7084871668, 14145343660, 42390336619
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1,k-2] +T[n-1,k-1] +T[n-1,k], T[n-1, k-2] +T[n-1,k]]]]; Table[Sum[T[n, k], {k,0,n}], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
-
SageMath
@CachedFunction def T(n, k): # A026536 if k == 0 or k == 2*n: return 1 elif k == 1 or k == 2*n-1: return n//2 elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k) return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) def A026548(n): return sum(T(n,k) for k in (0..n)) [A026548(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022
Formula
a(n) = Sum_{k=0..n} A026536(n, k).
Extensions
Missing a(0)=1 inserted by Sean A. Irvine, Oct 06 2019