A026550 a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A026536.
1, 2, 6, 13, 35, 77, 204, 453, 1199, 2675, 7089, 15855, 42070, 94228, 250269, 561068, 1491262, 3345334, 8896310, 19966310, 53118352, 119257668, 317373194, 712742108, 1897253203, 4261711183, 11346582851, 25491926511, 67882263130
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A026548.
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]]; A026550[n_]:= A026550[n]= Sum[T[j, k], {j,0,n}, {k,0,j}]; Table[A026550[n], {n,0,40}] (* G. C. Greubel, Apr 12 2022 *)
-
SageMath
@CachedFunction def T(n, k): # A026536 if k == 0 or k == 2*n: return 1 elif k == 1 or k == 2*n-1: return n//2 elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k) return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k) def A026550(n): return sum(sum(T(j,k) for k in (0..j)) for j in (0..n)) [A026550(n) for n in (0..40)] # G. C. Greubel, Apr 12 2022
Formula
a(n) = Sum_{j=0..n} Sum_{k=0..j} A026548(j, k).