A026559 a(n) = T(2*n, n-1), where T is given by A026552.
1, 3, 12, 45, 180, 721, 2940, 12069, 49935, 207691, 867900, 3640429, 15319395, 64643580, 273431408, 1158988141, 4921651521, 20934115963, 89173404140, 380355072153, 1624282578215, 6943928981859, 29715239620368, 127276313406125, 545605497876400, 2340694589348376, 10048952593607088, 43170264470594302
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+2)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k] + T[n-1, k-1], T[n-1, k-2] + T[n-1, k]]]]; (* T=A026552 *) a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n, n-1]]; Table[a[n], {n,40}] (* G. C. Greubel, Dec 17 2021 *)
-
Sage
@CachedFunction def T(n,k): # T = A026552 if (k==0 or k==2*n): return 1 elif (k==1 or k==2*n-1): return (n+2)//2 elif (n%2==0): return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) else: return T(n-1, k) + T(n-1, k-2) [T(2*n,n-1) for n in (1..40)] # G. C. Greubel, Dec 17 2021
Formula
a(n) = A026552(2*n, n-1)
Extensions
Terms a(20) onward added by G. C. Greubel, Dec 17 2021