cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026591 a(n) = T(2*n, n-1), where T is given by A026584.

Original entry on oeis.org

1, 2, 9, 38, 140, 701, 2534, 13294, 48369, 258430, 947694, 5114572, 18872399, 102539204, 380143356, 2075658454, 7723000261, 42330184638, 157951859953, 868376395790, 3247811317907, 17899895038348, 67075896452000, 370442993383238, 1390392820937920, 7692166179956366, 28910883325637649, 160184255555687056
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n-1]];
    Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k): # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n, n-1) for n in (1..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(2*n, n-1).

Extensions

Terms a(19) onward from G. C. Greubel, Dec 13 2021