cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A026584 Irregular triangular array T read by rows: T(i,0) = T(i,2i) = 1 for i >= 0; T(i,1) = T(i,2i-1) = floor(i/2) for i >= 1; and for i >= 2 and j = 2..2i-2, T(i,j) = T(i-1,j-2) + T(i-1,j-1) + T(i-1,j) if i+j is odd, and T(i,j) = T(i-1,j-2) + T(i-1,j) if i+j is even.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 1, 4, 2, 4, 1, 1, 1, 2, 5, 7, 8, 7, 5, 2, 1, 1, 2, 8, 9, 20, 14, 20, 9, 8, 2, 1, 1, 3, 9, 19, 28, 43, 40, 43, 28, 19, 9, 3, 1, 1, 3, 13, 22, 56, 62, 111, 86, 111, 62, 56, 22, 13, 3, 1, 1, 4, 14, 38, 69, 140, 167, 259, 222, 259, 167, 140, 69, 38, 14, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Row sums are in A026597. - Philippe Deléham, Oct 16 2006
T(n, k) = number of integer strings s(0)..s(n) such that s(0) = 0, s(n) = n-k, |s(i)-s(i-1)| <= 1 if s(i-1) odd, |s(i)-s(i-1)| = 1 if s(i-1) is even, for i = 1..n.

Examples

			First 5 rows:
  1
  1  0  1
  1  1  2  1  1
  1  1  4  2  4  1  1
  1  2  5  7  8  7  5  2  1
		

Crossrefs

Programs

  • Mathematica
    z = 12; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := Floor[n/2]; t[n_, k_] := Floor[n/2] /; k == 2 n - 1; t[n_, k_] := t[n, k] = If[EvenQ[n + k], t[n - 1, k - 2] + t[n - 1, k], t[n - 1, k - 2] + t[n - 1, k - 1] + t[n - 1, k]]; u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
    TableForm[u]   (* A026584 array *)
    v = Flatten[u] (* A026584 sequence *)
  • Sage
    @CachedFunction
    def T(n,k):
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    flatten([[T(n,k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Dec 11 2021

Formula

T(n, k) = T(n-1, k-2) + T(n-1, k) if ( (n+k) mod 2 ) = 0, otherwise T(n-1, k-2) + T(n-1, k-1) + T(n-1, k), where T(n, 0) = T(n, 2*n) = 1, T(n, 1) = T(n, 2*n-1) = floor(n/2).

Extensions

Updated by Clark Kimberling, Aug 29 2014

A026585 a(n) = T(n,n), T given by A026584. Also a(n) is the number of integer strings s(0), ..., s(n) counted by T, such that s(n)=0.

Original entry on oeis.org

1, 0, 2, 2, 8, 14, 40, 86, 222, 518, 1296, 3130, 7770, 19066, 47324, 117094, 291260, 724302, 1806220, 4507230, 11266718, 28188070, 70609316, 177023466, 444231564, 1115639586, 2803975860, 7052132546, 17748069294, 44693162266
Offset: 0

Views

Author

Keywords

Comments

The signed sequence 1,0,2,-2,8,-14,... is the inverse binomial transform of A026569. - Paul Barry, Sep 09 2004
Hankel transform of a(n) is 2^n. Hankel transform of a(n+1) is {0, -4, 0, 16, 0, -64, 0, 256, 0, ...} or -2^(n+1)*[x^n](x/(1+x^2)). Hankel transform of a(n+2) is 2^(n+1)*A109613(n+1). - Paul Barry, Mar 23 2011

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n-j-1, n-2*j)*Binomial(2*j, j): j in [0..Floor(n/2)]]): n in [0..40]]; // G. C. Greubel, Dec 12 2021
    
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x)/(1-x-4*x^2)], {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
  • Sage
    [sum(binomial(n-j-1, n-2*j)*binomial(2*j, j) for j in (0..(n//2))) for n in [0..40]] # G. C. Greubel, Dec 12 2021

Formula

a(n) = A026584(n, n).
G.f.: sqrt((1-x)/(1-x-4*x^2)). - Ralf Stephan, Jan 08 2004
From Paul Barry, Jul 01 2009: (Start)
G.f.: 1/(1 -2*x^2/(1 -x -x^2/(1 -x^2/(1 -x -x^2/(1 -x^2/(1 -x -x^2/(1 - ... (continued fraction).
a(0) = 1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*C(n-k,k)*A000984(k). (End)
From Paul Barry, Mar 23 2011: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(n-k-1,n-2*k)*A000984(k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k-1,n-2*k)*C(2*k,k). (End)
D-finite with recurrence n*a(n) +2*(-n+1)*a(n-1) +(-3*n+2)*a(n-2) +2*(2*n-5)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ (sqrt(17)+1)^(n-1/2) / (17^(1/4) * sqrt(Pi*n) * 2^(n-3/2)). - Vaclav Kotesovec, Feb 12 2014

A026599 a(n) = Sum_{j=0..2*i, i=0..n} A026584(i,j).

Original entry on oeis.org

1, 3, 9, 23, 61, 155, 401, 1023, 2629, 6723, 17241, 44135, 113101, 289643, 742049, 1900623, 4868821, 12471315, 31946601, 81831863, 209618269, 536945723, 1375418801, 3523201695, 9024876901, 23117683683, 59217191289, 151687926023
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 3^(n-1) else 2*Self(n-1) +3*Self(n-2) -4*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 15 2021
    
  • Mathematica
    LinearRecurrence[{2,3,-4}, {1,3,9}, 40] (* G. C. Greubel, Dec 15 2021 *)
  • Sage
    [( (1+x)/((1-x)*(1-x-4*x^2)) ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Dec 15 2021

Formula

G.f.: (1+x)/((1-x)*(1-x-4*x^2)). - Ralf Stephan, Feb 04 2004
From Klaus Purath, Feb 02 2021: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3).
a(n) = Sum_{j=0..n} A026597(j). (End)
a(n) = 2^n*(Fibonacci(n+2, 1/2) + Fibonacci(n+1, 1/2)) - 1/2. - G. C. Greubel, Dec 15 2021

A026595 a(n) = T(n, floor(n/2)), where T is given by A026584.

Original entry on oeis.org

1, 1, 1, 1, 5, 8, 19, 22, 69, 121, 341, 406, 1203, 2155, 6336, 7624, 22593, 40717, 121483, 147001, 438533, 792351, 2381512, 2892044, 8677763, 15703156, 47419503, 57728737, 173984792, 315180458, 954961034, 1164727748, 3522101709
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    Table[T[n, Floor[n/2]], {n, 0, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(n, n//2) for n in (0..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(n, floor(n/2))

A026587 a(n) = T(n, n-2), T given by A026584. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=2.

Original entry on oeis.org

1, 1, 5, 9, 28, 62, 167, 399, 1024, 2518, 6359, 15819, 39759, 99427, 249699, 626203, 1573524, 3953446, 9943905, 25019005, 62994733, 158680545, 399936573, 1008438757, 2543992514, 6420413940, 16210331727, 40943722115, 103453402718
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    Table[T[n, n-2], {n, 2, 40}] (* G. C. Greubel, Dec 12 2021 *)
  • Sage
    @CachedFunction
    def T(n, k): # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(n, n-2) for n in (2..40)] # G. C. Greubel, Dec 12 2021

Formula

a(n) = A026584(n, n-2).
Conjecture: (n+2)*a(n) = (3*n+2)*a(n-1) +(3*n+2)*a(n-2) -(11*n-16)*a(n-3) -2*(n-3)*a(n-4) +4*(2*n-9)*a(n-5). - R. J. Mathar, Jun 23 2013

A026589 a(n) = T(n,n-4), T given by A026584. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=4.

Original entry on oeis.org

1, 2, 9, 22, 69, 178, 497, 1294, 3452, 8964, 23430, 60556, 156663, 403214, 1037191, 2660978, 6821200, 17459732, 44657246, 114117628, 291449047, 743904326, 1897956899, 4840429962, 12340947855, 31455453822, 80158533099
Offset: 4

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    Table[T[n, n-4], {n, 4, 40}] (* G. C. Greubel, Dec 12 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(n, n-4) for n in (4..40)] # G. C. Greubel, Dec 12 2021

Formula

a(n) = A026584(n, n-4).
Conjecture: -(n+4)*(65*n-269)*a(n) +(-65*n^2+140*n+1933)*a(n-1) +(809*n^2-2431*n-4514)*a(n-2) +(-123*n^2+2496*n-205)*a(n-3) +2*(-726*n^2+3737*n-4395)*a(n-4) +8*(56*n-215)*(2*n-9)*a(n-5) = 0. - R. J. Mathar, Jun 23 2013

A026590 a(n) = T(2*n, n), where T is given by A026584.

Original entry on oeis.org

1, 1, 5, 19, 69, 341, 1203, 6336, 22593, 121483, 438533, 2381512, 8677763, 47419503, 173984792, 954961034, 3522101709, 19397198595, 71831252031, 396646918211, 1473610012405, 8154682794333, 30376120747792, 168394714422722, 628648474795879, 3490216221862041, 13053833414221023, 72566287730964469
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n]];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n, n) for n in (0..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(n, n).

Extensions

Terms a(19) onward from G. C. Greubel, Dec 13 2021

A026592 a(n) = T(2*n, n-2), where T is given by A026584.

Original entry on oeis.org

1, 3, 14, 65, 251, 1288, 4830, 25518, 95388, 510532, 1910821, 10309234, 38656462, 209766714, 787912030, 4294635438, 16155375825, 88371236851, 332859949946, 1826080683788, 6885797551334, 37867515477338, 142929375411104, 787637258527505, 2975423924172735, 16425495119248041, 62096233990615140, 343318987947145114
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n,n-2]];
    Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n, n-2) for n in (2..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(2*n, n-2).

Extensions

Terms a(19) onward added by G. C. Greubel, Dec 13 2021

A026593 a(n) = T(2*n-1, n-1), where T is given by A026584.

Original entry on oeis.org

1, 1, 8, 22, 121, 406, 2155, 7624, 40717, 147001, 792351, 2892044, 15703156, 57728737, 315180458, 1164727748, 6385672193, 23691834033, 130316812494, 485018155062, 2674846358141, 9980763478121, 55161813337474, 206262229900060, 1142020843590221, 4277853480389546, 23721423518350124, 88991782850212510
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
    a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n-1,n-1]];
    Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n-1, n-1) for n in (1..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(2*n-1, n-1).

Extensions

Terms a(19) onward added by G. C. Greubel, Dec 13 2021

A026594 a(n) = T(2*n-1, n-2), where T is given by A026584.

Original entry on oeis.org

1, 2, 13, 42, 225, 802, 4235, 15478, 82425, 304156, 1634435, 6064389, 32819839, 122244344, 665162897, 2484851486, 13577768505, 50841782786, 278745377821, 1045763359942, 5749240499515, 21603797860416, 119040956286133, 447922312642212, 2472886893122590, 9315646385012666, 51514464212546865, 194255376492836212
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k]]]]; (*T=A026584*)
    Table[T[2*n-1, n-2], {n, 2, 40}]  (* G. C. Greubel, Dec 13 2021 *)
  • Sage
    @CachedFunction
    def T(n, k):  # T = A026584
        if (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n//2)
        else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
    [T(2*n-1, n-2) for n in (2..40)] # G. C. Greubel, Dec 13 2021

Formula

a(n) = A026584(2*n-1, n-2).

Extensions

Terms a(19) onward added by G. C. Greubel, Dec 13 2021
Showing 1-10 of 16 results. Next